Skip to main content

Microwave Radiometry of Atmospheric Precipitation: Radiative Transfer Simulations with Parallel Supercomputers

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Included in the following conference series:

Abstract

In the present paper, the problems of formation and observation of spatial and angular distribution of thermal radiation of raining atmosphere in the millimeter wave band are addressed. Radiative transfer of microwave thermal radiation in three-dimensional dichroic medium is simulated numerically using high performance parallel computer systems. Governing role of three dimensional cellular inhomogeneity of the precipitating atmosphere in the formation of thermal radiation field is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basharinov, A.E., Gurvich, A.S., Egorov, S.T.: Radio Emission of the Earth as a Planet. Nauka, Moscow (1974)

    Google Scholar 

  2. Spencer, R., Goodman, H., Hood, R.: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Ocean. Technol. 6, 254–273 (1989)

    Article  Google Scholar 

  3. Roberti, L., Haferman, J., Kummerow, C.: Microwave radiative transfer through horizontally inhomogeneous precipitating clouds. J. Geophys. Res. 99(D8), 16707–16718 (1994)

    Article  Google Scholar 

  4. Battaglia, A., Davis, C., Emde, C., Simmer, C.: Microwave radiative transfer intercomparison study for 3-D dichroic media. J. Quant. Spectrosc. Radiat. Transf. 105(1), 55–67 (2007)

    Article  Google Scholar 

  5. Evtushenko, A.V., Zagorin, G., Kutuza, B.G., Sobachkin, A., Hornbostel, A., Schroth, A.: Determination of the Stokes vector of the microwave radiation emitted and scattered by the atmosphere with precipitation. Izv.-Atmos. Ocean. Phys. 38(4), 470–476 (2002)

    Google Scholar 

  6. Emde, C., Buehler, S.A., Davis, C., Eriksson, P., Sreerekha, T.R., Teichmann, C.: A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres. J. Geophys. Res. Atmos. 109(D24), D24207 (2004)

    Article  Google Scholar 

  7. Ilyushin, Y., Seu, R., Phillips, R.: Subsurface radar sounding of the Martian polar cap: radiative transfer approach. Planet. Space Sci. 53(14–15), 1427–1436 (2005)

    Article  Google Scholar 

  8. Ilyushin, Y.A.: Radiative transfer in layered media: Application to the radar sounding of Martian polar ices. II. Planet. Space Sci. 55(1–2), 100–112 (2007)

    Article  Google Scholar 

  9. Weinman, J.A., Davies, R.: Thermal microwave radiances from horizontally finite clouds of hydrometeors. J. Geophys. Res. Ocean. 83(C6), 3099–3107 (1978)

    Article  Google Scholar 

  10. Begum, S., Otung, I.E.: Rain cell size distribution inferred from rain gauge and radar data in the UK. Radio Sci. 44(2) (2009). RS2015

    Google Scholar 

  11. Tsintikidis, D., Haferman, J.L., Anagnostou, E.N., Krajewski, W.F., Smith, T.F.: A neural network approach to estimating rainfall from spaceborne microwave data. IEEE Trans. Geosci. Remote. Sens. 35(5), 1079–1093 (1997)

    Article  Google Scholar 

  12. Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing: Active and Passive, vol. 1. Addison-Wesley, Reading (1981)

    Google Scholar 

  13. Kutuza, B.G., Smirnov, M.T.: The influence of clouds on the radio-thermal radiation of the ‘atmosphere-ocean surface’ system. Issledovanie Zemli iz Kosmosa 1(3), 76–83 (1980)

    Google Scholar 

  14. Basharinov, A.E., Kutuza, B.G.: Determination of temperature dependence of the relaxation time of water molecules in clouds and possibilities for assessing the effective temperature of drop clouds by uhf radiometric measurements. Izv. Vyssh.Uchebn. Zaved., Radiofiz. 17(1), 52–57 (1974)

    Google Scholar 

  15. Czekala, H., Havemann, S., Schmidt, K., Rother, T., Simmer, C.: Comparison of microwave radiative transfer calculations obtained with three different approximations of hydrometeor shape. J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 545–558 (1999)

    Article  Google Scholar 

  16. Czekala, H., Simmer, C.: Microwave radiative transfer with nonspherical precipitating hydrometeors. J. Quant. Spectrosc. Radiat. Transf. 60(3), 365–374 (1998)

    Article  Google Scholar 

  17. Moroz, A.: Improvement of Mishchenko’s T-matrix code for absorbing particles. Appl. Opt. 44(17), 3604–3609 (2005)

    Article  Google Scholar 

  18. Hornbostel, A.: Investigation of Tropospheric Influences on Earth-satellite Paths by Beacon, Radiometer and Radar Measurements/Doctoral thesis (1995)

    Google Scholar 

  19. Ilyushin, Y.A., Kutuza, B.G.: Influence of a spatial structure of precipitates on polarization characteristics of the outgoing microwave radiation of the atmosphere. Izv.-Atmos. Ocean. Phys. 52(1), 74–81 (2016)

    Article  Google Scholar 

  20. Kummerow, C.: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteorol. 37(4), 356–370 (1998)

    Article  Google Scholar 

  21. Davis, C., Evans, K., Buehler, S., Wu, D., Pumphrey, H.: 3-D polarised simulations of space-borne passive mm/sub-mm midlatitude cirrus observations: a case study. Atmos. Chem. Phys. 7(15), 4149–4158 (2007)

    Article  Google Scholar 

  22. Kutuza, B.G., Hornbostel, A., Schroth, A.: Spatial inhomogeneities of rain brightness temperature and averaging effect for satellite microwave radiometer observations, vol. 3, pp. 1789–1791 (1994)

    Google Scholar 

  23. Kutuza, B.G., Zagorin, G.K., Hornbostel, A., Schroth, A.: Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third Stokes parameter. Radio Sci. 33(3), 677–695 (1998)

    Article  Google Scholar 

  24. Kutuza, B.G., Zagorin, G.K.: Two-dimensional synthetic aperture millimeter-wave radiometric interferometric for measuring full-component Stokes vector of emission from hydrometeors. Radio Sci. 38(3), 8055 (2003)

    Google Scholar 

  25. Volosyuk, V.K., Gulyaev, Y.V., Kravchenko, V.F., Kutuza, B.G., Pavlikov, V.V., Pustovoit, V.I.: Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems. J. Commun. Technol. Electron. 59(2), 97–118 (2014)

    Article  Google Scholar 

  26. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Interscience Publishers, New York (1967)

    MATH  Google Scholar 

  27. Lebedev, V.: Quadrature formulas for a sphere of the 25–29th order of accuracy. Sib. Mat. Zh. 18(1), 132–142 (1977)

    Article  Google Scholar 

  28. Sadovnichy, V.A., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “lomonosov”: supercomputing at moscow state university. In: In Contemporary High Performance Computing: From Petascale toward Exascale, pp. 283–307. Chapman & Hall/CRC Computational Science, Boca Raton, USA, CRC Press (2013)

    Google Scholar 

  29. Ilyushin, Y.A., Kutuza, B.G.: New possibilities of the use of synthetic aperture millimeter-wave radiometric interferometer for precipitation remote sensing from space. Proceedings -: International Kharkov Symposium on Physics and Engineering of Microwaves. Millimeter and Submillimeter Waves, MSMW (2013), pp. 300–302 (2013)

    Google Scholar 

  30. http://vrte.ru/16X2014KutuzaVDO3D/testSKIF1/htmGlobal/index.html

  31. Evtushenko, A., Zagorin, G., Kutuza, B., Sobachkin, A., Hornbostel, A., Schroth, A.: Determination of the Stokes vector of the microwave radiation emitted and scattered by the atmosphere with precipitation. Izv.-Atmos. Ocean. Phys. 38(4), 470–476 (2002)

    Google Scholar 

Download references

Acknowledgements

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. Support from the Russian Fundamental Research Fund with grants 13-02-12065 ofi-m and 15-02-05476 is also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslaw Ilyushin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ilyushin, Y., Kutuza, B. (2019). Microwave Radiometry of Atmospheric Precipitation: Radiative Transfer Simulations with Parallel Supercomputers. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics