Skip to main content

Inverse Optimization to Design Processing Paths to Tailor Formability of Mg Alloys

  • Conference paper
  • First Online:
  • 2332 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Due to the poor formability of Mg alloys at low temperatures, robust methods are needed to intelligently tailor the formability of Mg alloys for given forming processes such that specific parts can be successfully manufactured. One method of tailoring formability comes from altering the texture of Mg alloys . In our recent works, an invariant parameter called the Anisotropy Effect on Ductility (AED) has been proven to correctly portray physical formability measurements derived from tension and compression tests on textured AZ31 Mg alloy . In the present work, a Visco-Plastic Self-Consistent (VPSC ) crystal plasticity modeling has been used to simulate Equal Channel Angular Pressing as a processing method to alter texture using various routes. In order to create an AZ31 Mg alloy with a particular AED parameter or formability , an automated inverse optimization strategy has been used to predict the routes needed to attain target amount of formability required by applications .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.B. Hutchinson, M.R. Barnett, Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 2010. 63(7): p. 737–740.

    Article  CAS  Google Scholar 

  2. S. Yi, J. Bohlen, F. Heinman, D. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets. Acta Materialia, 2010. 58(2): p. 592–605.

    Article  CAS  Google Scholar 

  3. E. Dogan, M.W. Vaughan, S.J. Wang, I. Karman, G. Proust, Role of starting texture and deformation modes on low-temperature shear formability and shear localization of Mg–3Al–1Zn alloy. Acta Materialia, 2015. 89: p. 408–422.

    Article  CAS  Google Scholar 

  4. M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 1981. 12(3): p. 409–418.

    Article  CAS  Google Scholar 

  5. N. Stanford, M.R. Barnett, Solute strengthening of prismatic slip, basal slip and {101¯2} twinning in Mg and Mg–Zn binary alloys. International Journal of Plasticity, 2013. 47: p. 165–181.

    Article  CAS  Google Scholar 

  6. S. Basu, E. Dogan, B. Kondori, I. Karaman, A. A. Benzerga, Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia, 2017. 131: p. 349–362.

    Article  CAS  Google Scholar 

  7. M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, Review: Processing of metals by equal-channel angular pressing. Journal of Materials Science, 2001. 36(12): p. 2835–2843.

    Article  CAS  Google Scholar 

  8. H.K. Lin, J.C. Huang, and T.G. Langdon, Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Materials Science and Engineering: A, 2005. 402(1): p. 250–257.

    Article  Google Scholar 

  9. E. Dogan, I. Karaman, G. Ayoub, G. Kridli, Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets. Materials Science and Engineering: A, 2014. 610: p. 220–227.

    Article  CAS  Google Scholar 

  10. Z. Horita, T. Fujinami, M. Nemoto, T. G. Langdon. Improvement of mechanical properties for Al alloys using equal-channel angular pressing. Journal of Materials Processing Technology, 2001. 117(3): p. 288–292.

    Article  CAS  Google Scholar 

  11. Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu. Applied Physics Letters, 2002. 80(13): p. 2395–2397.

    Article  CAS  Google Scholar 

  12. F. Kang, J.T. Wang, and Y. Peng, Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy. Materials Science and Engineering: A, 2008. 487(1): p. 68–73.

    Article  Google Scholar 

  13. A. Jain, S.R. Agnew, Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Materials Science and Engineering: A, 2007. 462(1): p. 29–36.

    Article  Google Scholar 

  14. S.R. Agnew and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity, 2005. 21(6): p. 1161–1193.

    Article  CAS  Google Scholar 

  15. A. Ostapovets, P. Molnár, and A. Jäger, Visco-plastic self-consistent modelling of a grain boundary misorientation distribution after equal-channel angular pressing in an AZ31 magnesium alloy. Journal of Materials Science, 2013. 48(5): p. 2123–2134.

    Article  Google Scholar 

  16. R. Figueiredo, I. J. Beyerlin, A. P. Zhilyaev, T. G. Langdon, Evolution of texture in a magnesium alloy processed by ECAP through dies with different angles. Materials Science and Engineering: A, 2010. 527(7): p. 1709–1718.

    Article  Google Scholar 

  17. C.F. Gu, L.S. Toth, D.P. Field, J. J. Fundenberger, Y.D. Zheng, Room temperature equal-channel angular pressing of a magnesium alloy. Acta Materialia, 2013. 61(8): p. 3027–3036.

    Article  CAS  Google Scholar 

  18. W. Wen, M. Borodachenkova, C. N. Tome, G. Vincze, E. F. Rauch, F. Barlat, J. J. Gracio, Mechanical behavior of Mg subjected to strain path changes: Experiments and modeling. International Journal of Plasticity, 2015. 73: p. 171–183.

    Article  CAS  Google Scholar 

  19. A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture. Acta Materialia, 2016. 107: p. 424–483.

    Article  CAS  Google Scholar 

  20. A.A. Benzerga, J. Besson, Plastic potentials for anisotropic porous solids. European Journal of Mechanics - A/Solids, 2001. 20(3): p. 397–434.

    Article  Google Scholar 

  21. M.W. Vaughn, W.N., E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, I. Karaman, Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1zn. Manuscript submitted to Acta Materialia 2018.

    Google Scholar 

  22. R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica et Materialia, 1993. 41(9): p. 2611–2624.

    Article  CAS  Google Scholar 

  23. S. Choi, E. Shin, B. Seong, Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Materialia, 2007. 55(12): p. 4181–4192.

    Article  CAS  Google Scholar 

  24. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, Gnäupel-Herlod, Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. International Journal of Plasticity, 2015. 68: p. 1–20.

    Article  CAS  Google Scholar 

  25. H.S. Kim, M.H. Seo, and S.I. Hong, On the die corner gap formation in equal channel angular pressing. Materials Science and Engineering: A, 2000. 291(1): p. 86–90.

    Article  Google Scholar 

  26. B. Kondori, Y. Madi, J. Besson, A. A. Benzerga, Evolution of the 3D plastic anisotropy of HCP metals: Experiments and modeling. International Journal of Plasticity, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Karaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasim, W., Herrington, J.S., Benzerga, A.A., Wang, J., Karaman, I. (2019). Inverse Optimization to Design Processing Paths to Tailor Formability of Mg Alloys. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_36

Download citation

Publish with us

Policies and ethics