Skip to main content

Effect of Hot Working on the High Cycle Fatigue Behavior of WE43 Rare Earth Magnesium Alloy

  • Conference paper
  • First Online:
Book cover Magnesium Technology 2019

Abstract

Monotonic and cyclic behavior of the alloy WE43 plates in two conditions is examined, with an emphasis on revealing microstructural features governing the differences in the behavior of the two plates. To facilitate the evaluation of the effect of hot working conditions on the behavior, the as-cast WE43 was converted into two rolled plates with one being rolled at a temperature for 16.5 °C higher than the other plate. The plates were further processed into the T5 condition. The T5 plate rolled at a lower temperature was found to have a higher strength and elongation to fracture in tension. Additionally, it exhibited superior high cyclic fatigue behavior at room and elevated temperatures. The interesting performance characteristics of the alloy in two conditions are rationalized in terms of their microstructures . The results reveal that it is possible to further optimize the hot working conditions to obtain the alloy exhibiting better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnew, SR (2004) Wrought magnesium: A 21st century outlook. JOM 56(5):20–21.

    Article  CAS  Google Scholar 

  2. Schumann, S, Friedrich, H (2003) Current and future use of magnesium in the automobile industry. MSF 419–4:51–56.

    Article  CAS  Google Scholar 

  3. Aragones, J, Goundan, K, Kolp, S, Osborne, R, Ouimet, L, Pinch, W (2005). Development of the 2006 corvette z06 structural cast magnesium crossmember, SAE Technical Paper 2005-01-0340, 2005.

    Google Scholar 

  4. Robson, JD (2015) Critical assessment 9: Wrought magnesium alloys. MSTec 31(3):257–264.

    Article  Google Scholar 

  5. Arrabal, R, Matykina, E, Viejo, F, Skeldon, P, Thompson, GE (2008) Corrosion resistance of we43 and az91d magnesium alloys with phosphate peo coatings. Corros. Sci. 50(6):1744–1752.

    Article  CAS  Google Scholar 

  6. Gusieva, K, Davies, CHJ, Scully, JR, Birbilis, N (2015) Corrosion of magnesium alloys: The role of alloying. IMRv 60(3):169–194.

    Article  Google Scholar 

  7. Cho, K, Sano, T, Doherty, K, Yen, C, Gazonas, G, Montgomery, J, Moy, P, Davis, B, DeLorme, R (2009). Magnesium technology and manufacturing for ultra lightweight armored ground vehicles, DTIC Document.

    Google Scholar 

  8. Jiang, MG, Xu, C, Nakata, T, Yan, H, Chen, RS, Kamado, S (2016) Rare earth texture and improved ductility in a mg-zn-gd alloy after high-speed extrusion. Mater. Sci. Eng. A 667:233–239.

    Article  CAS  Google Scholar 

  9. Hidalgo-Manrique, P, Robson, JD, Pérez-Prado, MT (2017) Precipitation strengthening and reversed yield stress asymmetry in mg alloys containing rare-earth elements: A quantitative study. AcMat 124:456–467.

    Article  CAS  Google Scholar 

  10. Bhattacharyya, JJ, Wang, F, Wu, PD, Whittington, WR, El Kadiri, H, Agnew, SR (2016) Demonstration of alloying, thermal activation, and latent hardening effects on quasi-static and dynamic polycrystal plasticity of mg alloy, we43-t5, plate. IJP 81:123–151.

    Article  CAS  Google Scholar 

  11. Jahedi, M, McWilliams, BA, Kellogg, FR, Beyerlein, IJ, Knezevic, M (2018) Rate and temperature dependent deformation behavior of as-cast we43 magnesium-rare earth alloy manufactured by direct-chill casting. Mater. Sci. Eng. A 712(Supplement C):50–64.

    Article  CAS  Google Scholar 

  12. Imandoust, A, Barrett, CD, Al-Samman, T, Inal, KA, El Kadiri, H (2017) A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. JMatS 52(1):1–29.

    Article  Google Scholar 

  13. Al-Samman, T, Li, X (2011) Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 528(10):3809–3822.

    Article  Google Scholar 

  14. Hantzsche, K, Bohlen, J, Wendt, J, Kainer, KU, Yi, SB, Letzig, D (2010) Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Materi. 63(7):725–730.

    Article  CAS  Google Scholar 

  15. Bohlen, J, Nürnberg, MR, Senn, JW, Letzig, D, Agnew, SR (2007) The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. AcMat 55(6):2101–2112.

    Article  CAS  Google Scholar 

  16. Hadorn, JP, Hantzsche, K, Yi, S, Bohlen, J, Letzig, D, Wollmershauser, JA, Agnew, SR (2012) Role of solute in the texture modification during hot deformation of mg-rare earth alloys. MMTA 43(4):1347–1362.

    Article  Google Scholar 

  17. Sandlöbes, S, Pei, Z, Friák, M, Zhu, LF, Wang, F, Zaefferer, S, Raabe, D, Neugebauer, J (2014) Ductility improvement of mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. AcMat 70(Supplement C):92–104.

    Google Scholar 

  18. Stanford, N, Barnett, MR (2008) The origin of “rare earth” texture development in extruded mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 496(1–2):399–408.

    Article  Google Scholar 

  19. Nie, J-F (2012) Precipitation and hardening in magnesium alloys. MMTA 43(11):3891–3939.

    Article  CAS  Google Scholar 

  20. Nie, JF, Xiao, XL, Luo, CP, Muddle, BC (2001) Characterisation of precipitate phases in magnesium alloys using electron microdiffraction. Micron 32(8):857–863.

    Article  CAS  Google Scholar 

  21. Nie, JF, Muddle, BC (2000) Characterisation of strengthening precipitate phases in a mg–y–nd alloy. AcMat 48(8):1691–1703.

    Article  CAS  Google Scholar 

  22. Mengucci, P, Barucca, G, Riontino, G, Lussana, D, Massazza, M, Ferragut, R, Aly, EH (2008) Structure evolution of a we43 mg alloy submitted to different thermal treatments. Mater. Sci. Eng. A 479(1):37–44.

    Article  Google Scholar 

  23. Castellani, C, Lindtner, RA, Hausbrandt, P, Tschegg, E, Stanzl-Tschegg, SE, Zanoni, G, Beck, S, Weinberg, AM (2011) Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater 7(1):432–440.

    Article  CAS  Google Scholar 

  24. Gavras, S, Zhu, SM, Nie, JF, Gibson, MA, Easton, MA (2016) On the microstructural factors affecting creep resistance of die-cast mg–la-rare earth (nd, y or gd) alloys. Mater. Sci. Eng. A 675:65–75.

    Article  CAS  Google Scholar 

  25. Jiang, HS, Zheng, MY, Qiao, XG, Wu, K, Peng, QY, Yang, SH, Yuan, YH, Luo, JH (2017) Microstructure and mechanical properties of we43 magnesium alloy fabricated by direct-chill casting. Mater. Sci. Eng. A 684:158–164.

    Article  CAS  Google Scholar 

  26. Liu, W, Jiang, L, Cao, L, Mei, J, Wu, G, Zhang, S, Xiao, L, Wang, S, Ding, W (2014) Fatigue behavior and plane-strain fracture toughness of sand-cast mg–10gd–3y–0.5zr magnesium alloy. Mater. Des. 59:466–474.

    Article  CAS  Google Scholar 

  27. Yu, K, Li, W, Wang, R, Wang, B, Li, C (2008) Effect of T5 and T6 tempers on a hot-rolled we43 magnesium alloy. Mater. Trans. 49(8):1818–1821.

    Article  CAS  Google Scholar 

  28. Bhattacharyya, JJ, Wang, F, McQuade, PJ, Agnew, SR (2017) Deformation and fracture behavior of mg alloy, we43, after various aging heat treatments. Mater. Sci. Eng. A 705:79–88.

    Article  CAS  Google Scholar 

  29. Adams, JF, Allison, JE, Jones, JW (2016) The effects of heat treatment on very high cycle fatigue behavior in hot-rolled we43 magnesium. Int. J. Fatigue 93, Part 2:372–386.

    Article  CAS  Google Scholar 

  30. Park, M, Okayasu, K, Fukutomi, H, Kim, K (2016) Texture formation behaviors of mg-9al-1zn alloy during high-temperature compression deformation. Metals and Materials International 22(6):1129–1132.

    Article  CAS  Google Scholar 

  31. Polesak, FJ, Davis, B, DeLorme, R, Agnew, SR (2016) Hot workability of alloy we43 examined using hot torsion testing. Magnesium technology 2011. Sillekens, WH, Agnew, SR, Neelameggham, NR, Mathaudhu, SN. Cham; Springer International Publishing:379–384.

    Google Scholar 

  32. Liu, H-h, Ning, Z-l, Sun, H-c, Cao, F-y, Wang, H, Zhao, X-y, Sun, J-f (2016) Microstructure and elevated-temperature tensile properties of differential pressure sand cast mg-4y-3nd-0.5zr alloy. China Foundry 13(1):30–35.

    Article  Google Scholar 

  33. Xin, R, Li, L, Zeng, K, Song, B, Liu, Q (2011). Structural examination of aging precipitation in a mg–y–nd alloy at different temperatures. Mater. Charac. 62(5):535–539.

    Article  CAS  Google Scholar 

  34. (2015). Astm e8/e8m-15a. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken, PA, ASTM International.

    Google Scholar 

  35. Jahedi, M, McWilliams, BA, Moy, P, Knezevic, M (2017) Deformation twinning in rolled we43-t5 rare earth magnesium alloy: Influence on strain hardening and texture evolution. AcMat 131:221–232.

    Article  CAS  Google Scholar 

  36. Kondori, B, Benzerga, AA (2017) Modeling damage accumulation to fracture in a magnesium-rare earth alloy. AcMat 124:225–236.

    Article  CAS  Google Scholar 

  37. Barrett, CD, Imandoust, A, Oppedal, AL, Inal, K, Tschopp, MA, El Kadiri, H (2017) Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys. AcMat 128:270–283.

    Article  CAS  Google Scholar 

  38. Bhattacharyya, JJ, Wang, F, McQuade, PJ, Agnew, SR (2017) Deformation and fracture behavior of mg alloy, we43, after various aging heat treatments. Mater. Sci. Eng. A 705(Supplement C):79–88.

    Article  CAS  Google Scholar 

  39. Jahedi, M, McWilliams, BA, Knezevic, M (2018) Deformation and fracture mechanisms in we43 magnesium-rare earth alloy fabricated by direct-chill casting and rolling. Mater. Sci. Eng. A 726:194–207.

    Article  CAS  Google Scholar 

  40. Ochi, Y, Masaki, K, Hirasawa, T, Wu, X, Matsumura, T, Takigawa, Y, Higashi, K (2006) High cycle fatigue property and micro crack propagation behavior in extruded az31 magnesium alloys. Mater. Trans. 47(4):989–994.

    Article  CAS  Google Scholar 

  41. Nascimento, L, Yi, S, Bohlen, J, Fuskova, L, Letzig, D, Kainer, KU (2010) High cycle fatigue behaviour of magnesium alloys. Procedia Eng 2(1):743–750.

    Article  CAS  Google Scholar 

  42. Knezevic, M, Levinson, A, Harris, R, Mishra, RK, Doherty, RD, Kalidindi, SR (2010) Deformation twinning in az31: Influence on strain hardening and texture evolution. AcMat 58(19):6230–6242.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the US Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Knezevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghorbanpour, S., McWilliams, B.A., Knezevic, M. (2019). Effect of Hot Working on the High Cycle Fatigue Behavior of WE43 Rare Earth Magnesium Alloy. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_33

Download citation

Publish with us

Policies and ethics