Skip to main content

Corrosion Bending Fatigue of RESOLOY® and WE43 Magnesium Alloy Wires

  • Conference paper
  • First Online:
Magnesium Technology 2019

Abstract

RESOLOY ®, a magnesium resorbable alloy based on Mg–Dy is the focus of this study. Corrosion bending fatigue behavior of RESOLOY wires was investigated with WE43 serving as a reference. Since these wires are developed for absorbable implant applications like stents, clips and anastomotic nails, circulating Ringer solution of 37 °C was used to simulate body conditions. The alloys were first extruded and finally cold-drawn to a wire diameter of 500 µm. Both alloys show very fine grains. The microstructure of WE43 was found homogeneous and equiaxed. RESOLOY shows recrystallized but non-equiaxed grains. RESOLOY is slightly harder than WE43 . Both alloys were subjected to strain-controlled fatigue and corrosion fatigue in a sequence which mimicked stent crimping, expansion, and in-vessel cycling. Fatigue life was strongly influenced by corrosion . Fatigue data for RESOLOY highlight the need for further wire processing optimization work that is currently underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biotronik AG, www.biotronik.com/de-de/products/coronary/magmaris.

  2. Y.F. Zheng, X.N. Gu and F. Witte, Mat. Sci. Eng. R, 77, 1 (2014).

    Google Scholar 

  3. L. Choudhary, R.K. Singh Raman, J. Hofstetter and P.J. Uggowitzer, Mater. Sci. Eng. C 42, 629–636 (2014).

    Google Scholar 

  4. Magnesium Elektron UK, data sheet 467.

    Google Scholar 

  5. D. Tolnai, C.L. Mendis, A. Stark, G. Szakács, B. Wiese, K.U. Kainer and N. Hort, Mater. Lett., 102–103, 62 (2013).

    Google Scholar 

  6. B. Smola, I. Stulı́ková, F. von Buch and B.L. Mordike, Mat. Sci. Eng. A, 324, 113 (2002).

    Google Scholar 

  7. L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina and I.E. Tarytina, Met. Sci. Heat Treat., 52, 588 (2011).

    Google Scholar 

  8. Y.H. Kang, D. Wu, R.S. Chen and E.H. Han, J. Magnesium Alloys 2, 109 (2014).

    Google Scholar 

  9. US patents: 9,566,367 B2 & 9,522,219 B2, EU patents: 2744531 & 2744532.

    Google Scholar 

  10. Meko Laser Materials Processing, www.meko.de/RESOLOY.

  11. A.J. Griebel, J.E. Schaffer, T.M. Hopkins, A. Alghalayini, T. Mkorombindo, K.O. Ojo, Z. Xu, K.J. Little and S.K. Pixley, J Biomed. Mater. Research—Part B Applied Biomaterials, 106, 5, 1987–1997 (2018).

    Google Scholar 

  12. Fort Wayne Metals, www.fwmetals.com/RESOLOY-a-magnesium-alloy-for-absorbable-devices.

  13. D. Li, J. Dong, X. Zeng, C. Lu and W. Ding, J Alloys and Compounds 439, 1–2, 254-257 (2007).

    Google Scholar 

  14. D. Tolnai, P. Staron, A. Staeck, H. Eckerlebe, N. Schel, M. Müller, J. Gröbner and N. Hort, Magnesium Technology, 17–21 (2016).

    Google Scholar 

  15. A Steinacker, CL Mendis, M Mohedano, F Feyerabend, M Stekker, P Maier, KU Kainer, N Hort, Cells and Materials 32, 6, 22 (2016).

    Google Scholar 

  16. P. Maier, G. Szakács, M. Wala and N. Hort, Magnesium Technology, 393–398 (2015).

    Google Scholar 

  17. P. Maier, J. Gonzalez, R. Peters, F. Feyerabend, T. Ebel and N. Hort, European Cells and Materials 32, 6, 22 (2016).

    Google Scholar 

  18. P. Maier, F. Zimmermann, M. Rinne, G. Szakács, N. Hort and C. Vogt, Corrosion and Materials 69, 2, 178–190 (2018).

    Google Scholar 

  19. A.J. Griebel and J.E Schaffer, Magnesium Technology, 303–307 (2015).

    Google Scholar 

  20. L. Choudhary and R.K. Singh Raman, Acta Biomater. 8, 916–923 (2012).

    Google Scholar 

  21. V. Kree, J. Bohlen, D. Letzig and K.U. Kainer, Practical Metallography 41, 5, 233–246 (2004).

    Google Scholar 

  22. P. Maier, L. Gentsch and N. Hort, Magnesium Technology, 429–437 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Hartmut Habeck (UASS) for the corrosion experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maier, P. et al. (2019). Corrosion Bending Fatigue of RESOLOY® and WE43 Magnesium Alloy Wires. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_26

Download citation

Publish with us

Policies and ethics