Skip to main content

Alloy Design Strategies of the Native Anti-corrosion Magnesium Alloy

  • Conference paper
  • First Online:
Magnesium Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Application of Mg alloy is limited because of its poor corrosion resistance. Due to low standard electrode potential of Mg, severe galvanic corrosion can happen if other alloyed elements form high electrode potential precipitate in Mg alloy . Moreover, natively formed oxide film on the surface of pure Mg is not compact and cannot hinder further oxidation of inner substrate. In this work, alloy design strategies are proposed to improve the native anti-corrosion property of Mg alloys . The first is to purify the Mg-melt by forming high-density precipitates in the settling process to increase the efficiency of the settling process. The second is to enclose extra impurities in harmless compounds to avoid the severe galvanic corrosion . The third is to control the composites of oxides formed on the surface by alloying defined elements to obtain passivate, close packing oxides film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott TB (2015) Magnesium: Industrial and Research Developments over the last 15 years. Corrosion 71:120–127. https://doi.org/10.5006/1474

    Article  CAS  Google Scholar 

  2. Mordike BL, Ebert T (2001) Magnesium Properties - applications - potential. Mater Sci Eng A 302:37–45. https://doi.org/10.1016/s0921-5093(00)01351-4

    Article  Google Scholar 

  3. Wang TXJJ, Xu DK, Wu RZ, et al (2017) What is going on in magnesium alloys? J Mater Sci Technol 12–14. https://doi.org/10.1016/j.jmst.2017.07.019

    Article  Google Scholar 

  4. Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scr Mater 128:107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035

    Article  CAS  Google Scholar 

  5. Brady MP, Joost WJ, Warren CD (2017) Insights from a recent meeting: Current status and future directions in magnesium corrosion research. Corrosion 73:452–462. https://doi.org/10.5006/2255

    Article  CAS  Google Scholar 

  6. Song G, Atrens A (2000) Corrosion Mechanisms of Magnesium Alloys. Adv Eng Mater 11–33. https://doi.org/10.1002/(sici)1527-2648(199909)1:1%3c11::aid-adem11%3e3.0.co;2-n

    Article  CAS  Google Scholar 

  7. Esmaily M, Svensson JE, Fajardo S, et al (2017) Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 89:92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011

    Article  CAS  Google Scholar 

  8. Hillis JE, Reichek KN (1986) 860288 High purity magnesium AM60 alloy: the critical contaminant limits and the salt water corrosion performance. SAE Tech Pap Ser

    Google Scholar 

  9. Hfllis JE, Shook S (1989) 890205 Composition and performance of an improved magnesium AS41 alloy. SAE Tech Pap Ser

    Google Scholar 

  10. Mercer WE, Hillis JE (1992) 920073 The Critical Contaminant Limits and Salt Water Corrosion Performance of Magnesium AE42 Alloy. SAE Tech Pap Ser. https://doi.org/10.4271/920073

  11. Reichek KN, Clark KJ, Hillis JE (1985) 850417 Controlling the Salt Water Corrosion Performance of Magnesium AZ91 Alloy. SAE Tech Pap Ser. https://doi.org/10.4271/850417

  12. Hillis J. (1983) 830523 The effects of heavy metal contamination on magnesium corrosion performance. SAE Tech Pap Ser

    Google Scholar 

  13. Liu M, Uggowitzer PJ, Schmutz P, Atrens A (2008) Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys. Jom 60:39–44. https://doi.org/10.1007/s11837-008-0164-2

    Article  CAS  Google Scholar 

  14. Qiao Z, Shi Z, Hort N, et al (2012) Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting. Corros Sci 61:185–207. https://doi.org/10.1016/j.corsci.2012.04.030

    Article  CAS  Google Scholar 

  15. Chen X, Pan F, Mao J (2012) CN 102672148 A, Chinese Patent

    Google Scholar 

  16. Chen X, Yan T, Pan F, Mao J (2015) CN 104593612 A Chinese Patent

    Google Scholar 

  17. Pan F, Mao J, Chen X, et al (2015) CN 104630516 A Chinese Patent

    Google Scholar 

  18. Prasad A, Uggowitzer PJ, Shi Z, Atrens A (2012) Production of high purity magnesium alloys by melt purification with Zr. Adv Eng Mater 14:477–490. https://doi.org/10.1002/adem.201200054

    Article  CAS  Google Scholar 

  19. Parthiban GT, Palaniswamy N, Sivan V (2009) Effect of manganese addition on anode characteristics of electrolytic magnesium. Anti-corrosion Methods Mater 56:79–83. https://doi.org/10.1108/00035590910940069

    Article  CAS  Google Scholar 

  20. Matsubara H, Ichige Y, Fujita K, et al (2013) Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys. Corros Sci 66:203–210. https://doi.org/10.1016/j.corsci.2012.09.021

    Article  CAS  Google Scholar 

  21. Birbilis N, Williams G, Gusieva K, et al (2013) Poisoning the corrosion of magnesium. Electrochem commun 34:295–298. https://doi.org/10.1016/j.elecom.2013.07.021

    Article  CAS  Google Scholar 

  22. Liu M, Song GL (2013) Impurity control and corrosion resistance of magnesium-aluminum alloy. Corros Sci 77:143–150. https://doi.org/10.1016/j.corsci.2013.07.037

    Article  CAS  Google Scholar 

  23. Pan F, Chen X, Yan T, et al (2016) A novel approach to melt purification of magnesium alloys. J Magnes Alloy 4:8–14. https://doi.org/10.1016/j.jma.2016.02.003

    Article  CAS  Google Scholar 

  24. Wu GH, Gao HT, Ding WJ, Zhu YP (2005) Study on mechanism of iron reduction in magnesium alloy melt. J Mater Sci 40:6175–6180. https://doi.org/10.1007/s10853-005-3161-7

    Article  CAS  Google Scholar 

  25. Chen X, Pan F, Mao J (2011) CN 102296184 A Chinese Patent

    Google Scholar 

  26. Gao H, Wu G, Ding W, et al (2004) Study on Fe reduction in AZ91 melt by B2O3. Mater Sci Eng A 368:311–317. https://doi.org/10.1016/j.msea.2003.11.017

    Article  Google Scholar 

  27. Yuan Yuan, Jiajia Wu, Tao Chen, Tingting Liu, Dajian Li, Xianhua Chen, Aitao Tang, Fusheng Pan (2018) The CALPHAD investigation of the Mn effect on the melt purification and Fe tolerance limit in AZ and AM series of Magnesium alloy, submitted

    Google Scholar 

  28. Abaturov IS, Popel PS, Brodova IG, et al (2008) Exploration of the viscosity temperature dependences and microstructure of magnesium-based commercial alloy AZ91D with small additions of calcium. J Phys Conf Ser 98:6–10. https://doi.org/10.1088/1742-6596/98/6/062023

    Google Scholar 

  29. Simanjuntak S, Cavanaugh MK, Gandel DS, et al (2015) The Influence of Iron, Manganese, and Zirconium on the Corrosion of Magnesium : An Artificial Neural Network Approach. corrosion 71:199–208

    Google Scholar 

  30. Jiajia Wu, Xiaowen Yu, Dajian Li, Yuan Yuan, Bin Jiang, Fusheng Pan (2018) The study of high temperature oxidation behavior of Mg-Gd and Mg-Gd-Ca Alloys, submitted

    Google Scholar 

Download references

Acknowledgements

The authors thank the fund from the National Key Research and Development Program of China with No. 2016YFB0301100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T. et al. (2019). Alloy Design Strategies of the Native Anti-corrosion Magnesium Alloy. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_25

Download citation

Publish with us

Policies and ethics