Skip to main content

Microstructures, Corrosion and Mechanical Properties of Mg–Si Alloys as Biodegradable Implant Materials

  • Conference paper
  • First Online:
Magnesium Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Magnesium alloys attracted more and more attentions as biodegradable implant materials because of their properties similar to cortical bone. From the perspective of element biosafety and dietetics, the ideal alloying elements suitable for biodegradable applications should be those essential to or naturally presented in the human body. This study presents a novel aluminum-free magnesium alloy system with Si selected as a major alloying element, due to its superior biocompatibility in biological environment, especially in bone regeneration and repairment. Mg–Si binary alloys with different Si contents were prepared in a permanent mould via gravity casting and direct-chill casting. The microstructures, corrosion properties and mechanical properties were inves- tigated as a function of alloy composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Li, G. Sha, T. Wang, W. Jie, S. Ringer, Precipitation microstructure and age-hardening response of an Mg–Gd–Nd–Zn–Zr alloy, Materials Science and Engineering: A 534 (2012) 1–6.

    Article  CAS  Google Scholar 

  2. G. Riontino, M. Massazza, D. Lussana, P. Mengucci, G. Barucca, R. Ferragut, A novel thermal treatment on a Mg–4.2 Y–2.3 Nd–0.6 Zr (WE43) alloy, Materials Science and Engineering: A 494(1–2) (2008) 445–448.

    Article  Google Scholar 

  3. D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials 112 (2017) 287–302.

    Article  CAS  Google Scholar 

  4. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current opinion in solid state and materials science 12(5–6) (2008) 63–72.

    Article  CAS  Google Scholar 

  5. W. Wang, J. Han, X. Yang, M. Li, P. Wan, L. Tan, Y. Zhang, K. Yang, Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization, Materials Science and Engineering: B 214 (2016) 26–36.

    Article  CAS  Google Scholar 

  6. S.C. Bondy, Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration, Neurotoxicology 52 (2016) 222–229.

    Article  CAS  Google Scholar 

  7. Z. Wang, X. Wei, J. Yang, J. Suo, J. Chen, X. Liu, X. Zhao, Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis, Neuroscience letters 610 (2016) 200–206.

    Article  CAS  Google Scholar 

  8. G. Pagano, F. Aliberti, M. Guida, R. Oral, A. Siciliano, M. Trifuoggi, F. Tommasi, Rare earth elements in human and animal health: state of art and research priorities, Environmental research 142 (2015) 215–220.

    Article  CAS  Google Scholar 

  9. E. Zhang, L. Yang, J. Xu, H. Chen, Microstructure, mechanical properties and bio-corrosion properties of Mg–Si (–Ca, Zn) alloy for biomedical application, Acta biomaterialia 6(5) (2010) 1756–1762.

    Article  CAS  Google Scholar 

  10. A. Gil-Santos, I. Marco, N. Moelans, N. Hort, O. Van der Biest, Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys, Materials Science and Engineering: C 71 (2017) 25–34.

    Article  CAS  Google Scholar 

  11. E.M. Carlisle, Silicon as an essential trace element in ammal nutrition, Silicon biochemistry 703 (2008) 123.

    Google Scholar 

  12. L.F. Rodella, V. Bonazza, M. Labanca, C. Lonati, R. Rezzani, A review of the effects of dietary silicon intake on bone homeostasis and regeneration, The journal of nutrition, health & aging 18(9) (2014) 820–826.

    Article  CAS  Google Scholar 

  13. Y. Guangyin, L. Manping, D. Wenjiang, A. Inoue, Microstructure and mechanical properties of Mg–Zn–Si-based alloys, Materials Science and Engineering: A 357(1–2) (2003) 314–320.

    Article  Google Scholar 

  14. J. Zhang, Z. Fan, Y. Wang, B. Zhou, Microstructural development of Al–15wt.% Mg2Si in situ composite with mischmetal addition, Materials Science and Engineering: A 281(1–2) (2000) 104–112.

    Article  Google Scholar 

  15. G.F.S. Beer, E. Schmid Proc. Conf. Magnesium Alloys and their Applications. (1992), pp. 317–324.

    Google Scholar 

  16. Q. Jiang, H. Wang, Y. Wang, B. Ma, J. Wang, Modification of Mg2Si in Mg–Si alloys with yttrium, Materials Science and Engineering: A 392(1–2) (2005) 130–135.

    Article  Google Scholar 

  17. E. Guo, B. Ma, L. Wang, Modification of Mg2Si morphology in Mg–Si alloys with Bi, Journal of Materials Processing Technology 206(1–3) (2008) 161–166.

    Article  CAS  Google Scholar 

  18. A. Srinivasan, S. Ningshen, U.K. Mudali, U. Pillai, B. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy, Intermetallics 15(12) (2007) 1511–1517.

    Article  CAS  Google Scholar 

  19. M. Baoxia, W. Liping, G. Erjun, Modification Effect of Lanthanum on Primary Phase Mg2Si in Mg-Si Alloys, J.Chin. Rare Earth Soc. 26(1) (2008) 87.

    Google Scholar 

  20. A. Gil-Santos, N. Moelans, N. Hort, O. Van der Biest, Identification and description of intermetallic compounds in Mg–Si–Sr cast and heat-treated alloys, Journal of Alloys and Compounds 669 (2016) 123–133.

    Article  CAS  Google Scholar 

  21. J.J. Kim, D.H. Kim, K. Shin, N.J. Kim, Modification of Mg2Si morphology in squeeze cast Mg–Al–Zn–Si alloys by Ca or P addition, Scripta Materialia 41(3) (1999) 333–340.

    Article  CAS  Google Scholar 

  22. J. Zhang, Z. Fan, Y. Wang, B. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al–Mg2Si alloys, Journal of materials science letters 19(20) (2000) 1825–1828.

    Article  CAS  Google Scholar 

  23. H.S. Jiang, M.Y. Zheng, X.G. Qiao, K. Wu, Q.Y. Peng, S.H. Yang, Y.H. Yuan, J.H. Luo, Microstructure and mechanical properties of WE43 magnesium alloy fabricated by direct-chill casting, Materials Science and Engineering: A 684 (2017) 158–164.

    Article  CAS  Google Scholar 

  24. M. Jahedi, B.A. McWilliams, F.R. Kellogg, I.J. Beyerlein, M. Knezevic, Rate and temperature dependent deformation behavior of as-cast WE43 magnesium-rare earth alloy manufactured by direct-chill casting, Materials Science and Engineering: A 712 (2018) 50–64.

    Article  CAS  Google Scholar 

  25. F.R. Elsayed, N. Hort, M.A. Salgado Ordorica, K.U. Kainer, Magnesium permanent mold castings optimization, Materials Science Forum, Trans Tech Publ, 2011, pp. 65–68.

    Article  CAS  Google Scholar 

  26. M. Salgado-Ordorica, W. Punessen, S. Yi, J. Bohlen, K.-U. Kainer, N. Hort, Macrostructure evolution in directionally solidified Mg-RE alloys, Magnesium Technology 2011, Springer2011, pp. 113–118.

    Google Scholar 

  27. T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams; ASM International Materials Park; 1990.

    Google Scholar 

  28. P. Mengucci, G. Barucca, G. Riontino, D. Lussana, M. Massazza, R. Ferragut, E.H. Aly, Structure evolution of a WE43 Mg alloy submitted to different thermal treatments, Materials Science and Engineering: A 479(1–2) (2008) 37–44.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the Chinese Scholarship Council (CSC) for a scholarship. The research was supported by Key program of China on biomedical materials research and tissue and organ replacement (No. 2016YFC1101804, 2016YFC1100604) and funding from Institute of Metal Research, Chinese Academy of Sciences (No. 2015-ZD01). Sincerest gratitude goes to the colleagues from Magnesium Innovation Centre (HZG) for their technical supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Tan or Norbert Hort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Gao, M., Huang, Y., Tan, L., Yang, K., Hort, N. (2019). Microstructures, Corrosion and Mechanical Properties of Mg–Si Alloys as Biodegradable Implant Materials. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_23

Download citation

Publish with us

Policies and ethics