Skip to main content

Ion Beam Modification of Poly(methyl methacrylate) (PMMA)

  • Chapter
  • First Online:
Book cover Radiation Effects in Polymeric Materials

Abstract

In this chapter, we review fundamental issues related to the damaging processes of PMMA films induced by high-energy ions with kinetic energies from a few keV to a few GeV, covering the regimes of energy deposition dominated by nuclear collisions and by electronic excitation. Emphasis is given to present an overview of the bond-breaking processes, the changes in the polymer chemical structure, and the corresponding modifications in selected macroscopic physical properties (optical, mechanical, and electrical).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan H, Zhao J, Zhang Y, Xie E, Li H (2009) Nanotechnology 20(13):135306

    Article  Google Scholar 

  2. Frazer R, Byron R, Osborne P, West K (2005) J Long Term Effects Med Implants 15:629–639

    Article  CAS  Google Scholar 

  3. Komuro M, Atoda N, Kawakatsu H (1979) J Electrochem Soc 126(3):483–490

    Article  CAS  Google Scholar 

  4. Hall TM, Wagner A, Thompson LF (1982) J Appl Phys 53(6):3997–4010

    Article  CAS  Google Scholar 

  5. Gorelick S, Guzenko VA, Vila-Comamala J, David C (2010) Nanotechnology 21(29):8

    Article  Google Scholar 

  6. Vladimirsky Y, Vladimirsky O, Morris KJ, Klopf JM, Calderon GM, Saile V (1996) Microelectron Eng 30(1–4):543–546

    Article  CAS  Google Scholar 

  7. Puttaraksa N, Norarat R, Laitinen M, Sajavaara T, Singkarat S, Whitlow HJ (2012) Nucl Instrum Methods Phys Res Sect B 272:162–164

    Article  CAS  Google Scholar 

  8. van Kan JA, Malar P, Wang YH (2014) Appl Surf Sci 310:100–111

    Article  Google Scholar 

  9. Schardt D, Elsaesser T, Schulz-Ertner D (2010) Rev Mod Phys 82(1):383–425

    Article  Google Scholar 

  10. Loeffler JS, Durante M (2013) Nat Rev Clin Oncol 10(7):411–424

    Article  Google Scholar 

  11. Linz U (2011) Ion beam therapy: fundamentals, technology, clinical applications. Springer, Berlin

    Google Scholar 

  12. Randall JN, Flanders DC, Economou NP, Donnelly JP, Bromley EI (1983) Appl Phys Lett 42(5):457–459

    Article  CAS  Google Scholar 

  13. Dole M (2013) The radiation chemistry of macromolecules, vol. 2. Elsevier Science, Netherlands

    Chapter  Google Scholar 

  14. Egusa S, Ishigure K, Tabata Y (1979) Macromolecules 12(5):939–944

    Article  CAS  Google Scholar 

  15. Trautmann C (2010) Micro- and nanoengineering with ion tracks. In: Ion beams in nanoscience and technology. Springer, Heidelberg, pp 369–387

    Chapter  Google Scholar 

  16. Chapiro A (1995) Nucl Instrum Methods B 105(1–4):5–7

    Article  CAS  Google Scholar 

  17. Marletta G (1990) Nucl Instrum Methods B 46(1–4):295–305

    Article  Google Scholar 

  18. Duraud JP, LeMoel A (1995) Nucl Instrum Methods B 105(1–4):71–80

    Article  CAS  Google Scholar 

  19. Lee E, Rao G, Mansur L (1999) Radiat Phys Chem 55(3):293–305

    Article  CAS  Google Scholar 

  20. Fink D, Hosoi F, Omichi H, Sasuga T, Amaral L (1994) Radiat Eff Defects Solids 132(4):313–328

    Article  CAS  Google Scholar 

  21. Fragala M, Compagnini G, Licciardello A, Puglisi O (1998) J Polym Sci Pol Phys 36(4):655–664

    Article  CAS  Google Scholar 

  22. Kudoh H, Sasuga T, Seguchi T (1997) Radiat Phys Chem 50(3):299–302

    Article  CAS  Google Scholar 

  23. Lee EH (1999) Nucl Instrum Methods B 151(1–4):29–41

    Article  CAS  Google Scholar 

  24. Schnabel W, Klaumunzer S, Sotobayashi H, Asmussen F, Tabata Y (1984) Macromolecules 17(10):2108–2111

    Article  CAS  Google Scholar 

  25. Schnabel W, Sotobayashi H (1976) Polym J 8(5):423–427

    Article  CAS  Google Scholar 

  26. Choi HW, Woo HJ, Hong W, Kim JK, Lee SK, Eum CH (2001) Appl Surf Sci 169:433–437

    Article  Google Scholar 

  27. Cho SO, Jun HY (2005) Nucl Instrum Methods B 237(3–4):525–532

    Article  CAS  Google Scholar 

  28. Fink D (2004) Fundamentals of ion-irradiated polymers. Springer, Berlin

    Google Scholar 

  29. Compton RG, Bamford CH, Tipper CFH (1975) Degradation of polymers. Elsevier Science, Netherlands

    Google Scholar 

  30. Grassie N, Scott G (1988) Polymer degradation and stabilisation. Cambridge University Press, Cambridge

    Google Scholar 

  31. Licciardello A, Fragala M, Foti G, Compagnini G, Puglisi O (1996) Nucl Instrum Methods B 116(1–4):168–172

    Article  CAS  Google Scholar 

  32. Pignataro B, Fragala M, Puglisi O (1997) Nucl Instrum Methods B 131(1–4):141–148

    Article  CAS  Google Scholar 

  33. Zailer I, Frost JEF, Chabasseur V, Ford C, Pepper M (1999) Semicond Sci Technol 11:1235

    Google Scholar 

  34. Fragala ME, Compagnini G, Torrisi L, Puglisi O (1998) Nucl Instrum Methods B 141(1–4):169–173

    Article  CAS  Google Scholar 

  35. Manring LE (1989) Macromolecules 22(6):2673–2677

    Article  CAS  Google Scholar 

  36. Manring LE (1988) Macromolecules 21(2):528–530

    Article  CAS  Google Scholar 

  37. Mahoney CM, Fahey AJ, Gillen G, Xu C, Batteas JD (2007) Anal Chem 79(3):837–845

    Article  CAS  Google Scholar 

  38. Compagnini G, Angilella GGN, Raudino A, Puglisi O (2001) Nucl Instrum Methods B 175:559–563

    Article  Google Scholar 

  39. Fragala ME, Compagnini G, Puglisi O (1999) J Mater Res 14(1):228–231

    Article  CAS  Google Scholar 

  40. Choi JO, Moore JA, Corelli JC, Silverman JP, Bakhru H (1988) J Vac Sci Technol B 6:2286

    Article  CAS  Google Scholar 

  41. Wochnowski C, Eldin MAS, Metev S (2005) Polym Degrad Stab 89(2):252–264

    Article  CAS  Google Scholar 

  42. Chang Z, LaVerne JA (2000) J Phys Chem B 104(45):10557–10562

    Article  CAS  Google Scholar 

  43. Schrempel F, Witthuhn W (1997) Nucl Instrum Methods B 132(3):430–438

    Article  CAS  Google Scholar 

  44. Chang Z, LaVerne JA (2001) Radiat Phys Chem 62(1):19–24

    Article  CAS  Google Scholar 

  45. Hossain UH, Lima V, Baake O, Severin D, Bender M, Ensinger W (2014) Nucl Instrum Methods B 326:135–139

    Article  CAS  Google Scholar 

  46. Ruck DM, Schulz J, Deusch N (1997) Nucl Instrum Methods B 131(1–4):149–158

    Article  Google Scholar 

  47. Kulish JR, Franke H, Singh A, Lessard RA, Knystautas EJ (1988) J Appl Phys 63(8):2517–2521

    Article  CAS  Google Scholar 

  48. Szilasi SZ, Huszank R, Szikra D, Vaczi T, Rajta I, Nagy I (2011) Mater Chem Phys 130(1–2):702–707

    Article  CAS  Google Scholar 

  49. Davenas J, Thevenard P, Boiteux G, Fallavier M, Lu XL (1990) Nucl Instrum Methods B 46(1–4):317–323

    Article  Google Scholar 

  50. Singh P, Kumar R, Virk H, Prasad R (2010) Indian J Pure AP Phy 48(5):321–325

    Google Scholar 

  51. Fink D, Mockel HJ, Melzer H, Klett R, Cardoso J, Montiel R, Vazquez H, Hosoi F, Omichi H, Wang L, Chadderton LT (1997) Appl Phys A 64(1):61–68

    Article  CAS  Google Scholar 

  52. Thomaz R, Gutierres LI, Morais J, Louette P, Severin D, Trautmann C, Pireaux JJ, Papaléo RM (2015) Nucl Instrum Methods B 365:578–582

    Article  CAS  Google Scholar 

  53. Kallweit R, Roll U, Strack H, Pocker A (1992) Mal Res Soc Symp Proc 235:345–350

    Article  CAS  Google Scholar 

  54. Davenas J, Xu XL, Boiteux G, Sage D (1989) Nucl Instrum Methods B 39(1–4):754–763

    Article  Google Scholar 

  55. Arif S, Rafique MS, Saleemi F, Naab F, Toader O, Mahmood A, Aziz U (2016) Appl Phys A 122(9)

    Google Scholar 

  56. Fink D, Chadderton LT, Schmoldt A (1993) Nucl Tracks Rad Meas 22(1–4):51–52

    Article  CAS  Google Scholar 

  57. Schmoldt A, Chadderton LT, Fink D (1994) Radiat Eff Defects Solids 128(4):277–285

    Article  CAS  Google Scholar 

  58. Fink D, Chadderton L, Hosoi F, Omichi H, Sasuga T, Schmoldt A, Wang L, Klett R, Hillenbrand J (1994) Nucl Instrum Methods B 91(1–4):146–150

    Article  CAS  Google Scholar 

  59. Papaleo RM (1997) Nucl Instrum Methods B 131(1–4):121–134

    Article  CAS  Google Scholar 

  60. Papaleo RM, Dearaujo MA, Livi RP (1992) Nucl Instrum Methods B 65(1–4):442–446

    Article  Google Scholar 

  61. Papaleo R, Hallen A, Sundqvist B, Farenzena L, Livi R, deAraujo M, Johnson R (1996) Phys Rev B 53(5):2303–2313

    Article  CAS  Google Scholar 

  62. Sun YM, Zhu ZY, Wang ZG, Jin YF, Liu J, Hou MD, Zhang QX (2003) Nucl Instrum Methods B 209:188–193

    Article  CAS  Google Scholar 

  63. Singh P, Kumar R, Cyriac J, Rahul MT, Nambissan PMG, Prasad R (2014) Nucl Instrum Methods B 320:64–69

    Article  CAS  Google Scholar 

  64. Licciardello A, Fragala ME, Compagnini G, Puglisi O (1997) Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 122(3):589–593

    Article  CAS  Google Scholar 

  65. Kumar R, Ali S, Mahur A, Virk H, Singh F, Khan S, Avasthi D, Prasad R (2008) Nucl Instrum Methods B 266(8):1788–1792

    Article  CAS  Google Scholar 

  66. Thomaz R, Louette P, Hoff G, Müller S, Pireaux JJ, Trautmann C, Papaléo RM (2018) Phys Rev Lett 121(6):066101

    Google Scholar 

  67. Unai S, Puttaraksa N, Pussadee N, Singkarat K, Rhodes MW, Whitlow HJ, Singkarat S (2013) Microelectron Eng 102:18–21

    Article  CAS  Google Scholar 

  68. Calcagno L, Compagnini G, Foti G (1992) Nucl Instrum Methods B 65(1–4):413–422

    Article  Google Scholar 

  69. Kumar R, Ali S, Singh P, De U, Virk H, Prasad R (2011) Nucl Instrum Methods B 269(14):1755–1759

    Article  CAS  Google Scholar 

  70. Sum TC, Bettiol AA, Florea C, Watt E (2006) J Lightwave Technol 24(10):3803–3809

    Article  CAS  Google Scholar 

  71. Ruck DM, Brunner S, Frank W, Kulisch J, Franke H (1992) Surf Coat Technol 51(1–3):318–323

    Article  Google Scholar 

  72. Hong W, Woo HJ, Choi HW, Kim YS, Kim GD (2001) Appl Surf Sci 169:428–432

    Article  Google Scholar 

  73. Ruck DM (2000) Nucl Instrum Methods B 166:602–609

    Article  Google Scholar 

  74. Schrempel F, Kim YS, Witthuhn W (2002) Appl Surf Sci 189(1):102–112

    Article  CAS  Google Scholar 

  75. Papaleo RM, Silva MR, Leal R, Grande PL, Roth M, Schattat B, Schiwietz G (2008) Phys Rev Lett 101(16):167601

    Article  CAS  Google Scholar 

  76. Papaleo RM, Thomaz R, Gutierres LI, de Menezes VM, Severin D, Trautmann C, Tramontina D, Bringa EM, Grande PL (2015) Phys Rev Lett 114(11):118302

    Article  CAS  Google Scholar 

  77. Sum TC, Bettiol AA, Seng HL, Rajta I, van Kan JA, Watt F (2003) Nucl Instrum Methods B 210:266–271

    Article  CAS  Google Scholar 

  78. Ruck DM, Schulz J, Frank WF (1996) In: Conference on photopolymer device physics, chemistry, and applications III, Proceedings of the society of photo-optical instrumentation engineers (Spie). Denver, Co, pp 118–128

    Google Scholar 

  79. Bettiol AA, Sum TC, Cheong FC, Sow CH, Rao SV, van Kan JA, Teo EJ, Ansari K, Watt F (2005) Nucl Instrum Methods B 231:364–371

    Article  CAS  Google Scholar 

  80. Kallweit R, Biersack JP (1991) Radiat Eff Defects Solids 116(1–2):29–36

    Article  CAS  Google Scholar 

  81. Rajta I, Szilasi SZ, Budai J, Toth Z, Petrik P, Baradacs E (2007) Nucl Instrum Methods B 260(1):400–404

    Article  CAS  Google Scholar 

  82. Kudoh H, Sasuga T, Seguchi T, Katsumura Y (1996) Polymer 37(21):4663–4665

    Article  CAS  Google Scholar 

  83. Lee E, Rao G, Mansur L, Balogh A, Walter G (1997) Paper presented at the international symposium on materials science applications of ion beam techniques, Seeheim

    Google Scholar 

  84. Kavetskyy TS, Borc J, Kukhazh YY, Stepanov AL (2015) The influence of low dose ion-irradiation on the mechanical properties of PMMA probed by nanoindentation. In: Petkov P, Tsiulyanu D, Kulisch W, Popov C (eds) Nanoscience advances in CBRN agents detection, information and energy security. Springer, Netherlands, pp 65–71

    Google Scholar 

  85. Venkatesan T, Forrest SR, Kaplan ML, Murray CA, Schmidt PH, Wilkens BJ (1983) J Appl Phys 54(6):3150–3153

    Article  CAS  Google Scholar 

  86. Hadjichristov GB, Gueorguiev VK, Ivanov TE, Marinov YG, Ivanov VG, Faulques E (2010) J Phys Conf Ser 207(1):012022

    Article  Google Scholar 

  87. Kaplan ML, Forrest SR, Schmidt PH, Venkatesan T (1984) J Appl Phys 55(3):732–742

    Article  CAS  Google Scholar 

  88. Esteves C, Thomaz R, Gutierres L, Papaleo R (2013) Nucl Instrum Methods B 314:71–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Meurer Papaléo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomaz, R.S., Papaléo, R.M. (2019). Ion Beam Modification of Poly(methyl methacrylate) (PMMA). In: Kumar, V., Chaudhary, B., Sharma, V., Verma, K. (eds) Radiation Effects in Polymeric Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05770-1_4

Download citation

Publish with us

Policies and ethics