Skip to main content

High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition

  • Chapter
  • First Online:
Radiation Effects in Polymeric Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The chapter presents an overview of the effects and phenomena leading to structural and compositional evolution of polymer materials under high-fluence ion implantation. Ion stopping mechanisms and degradation of polymer structure due to radiation damage are discussed, giving examples for different ion species and polymer types mostly focusing on the low- to medium-energy regimes. Typical depth profiles and tendencies in depth distribution of impurities as well as the related changes in composition of the implanted layers are analysed. The emphasis is put on the high-fluence implantation of metal ions leading to the nucleation of nanoparticles and formation of composite materials. A special case of cluster ion implantation is also discussed. Change in mechanical, electronic, optical and magnetic properties of the ion-implanted polymers is under the consideration in the final part of the chapter also including a brief overview on applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryssel H, Glawischnig H (eds) (1982) Ion implantation techniques. Springer-Verlag, Berlin

    Google Scholar 

  2. Ziegler JF (ed) (1992) Handbook of ion implantation technology. North-Holland, Amsterdam

    Google Scholar 

  3. Rimini E (1995) Ion implantation: basics to device fabrication. Kluwer, Boston

    Book  Google Scholar 

  4. Poate JM, Saadatmand K (2002) Ion beam technologies in the semiconductor world. Rev Sci Instrum 73:868–872

    Article  CAS  Google Scholar 

  5. Dearnaley G (1983) Applications of ion implantation in metals. Thin Sol Films 107:315–326

    Article  CAS  Google Scholar 

  6. Jain IP, Agarwal G (2011) Ion beam induced surface and interface engineering. Surf Sci Rep 66:77–172

    Article  CAS  Google Scholar 

  7. Mazzoldi P, Arnold GW (eds) (1987) Ion beam modification of insulators. Elsevier, Amsterdam

    Google Scholar 

  8. Dresselhaus MS, Wasserman B, Wnek GE (1984) Ion implantation of polymers. Mater Res Soc Symp Proc 27:413–422

    Article  CAS  Google Scholar 

  9. Wnek GE, Wasserman B, Loh I-H (1984) Structure/majority carrier relationships in ion-implanted polymer films. Mater Res Soc Symp Proc 27:435–437

    Article  CAS  Google Scholar 

  10. Venkatesan T, Wolf T, Allara D, Wilkens BJ, Taylor GN, Foti G (1984) Synthesis of hard Si-C composite films by ion beam irradiation of polymer films. Mater Res Soc Symp Proc 27:439–444

    Article  CAS  Google Scholar 

  11. Koon NC, Weber D, Pehrsson P, Schindler AI (1984) Magnetic properties of iron implanted polymers and graphite. Mater Res Soc Symp Proc 27:445–448

    Article  CAS  Google Scholar 

  12. Chapiro A (1988) Chemical modification in irradiated polymers. Nucl Instr Meth Phys Res B 32:111–114

    Article  Google Scholar 

  13. Marletta G (1990) Chemical reactions and physical property modifications induced by keV ion beams in polymers. Nucl Instr Meth Phys Res B 46:295–305

    Article  Google Scholar 

  14. Marletta G, Iacona F (1995) Chemical and physical property modifications induced by ion irradiation in polymers. In: Pauleau Y (ed) Materials and processes for surface and interface engineering. Kluwer, Dordrecht, pp 597–640

    Chapter  Google Scholar 

  15. Gied RE, Moss MG, Kaufmann J, Wang YQ (1998) Electrical applications of ion-implanted polymer films. In: Wise DL, Wnek GE, Trantolo DJ, Cooper TM, Gresser JD (eds) Electrical and optical polymer systems. Marcel Dekker, New York, pp 1011–1030

    Google Scholar 

  16. Sviridov DV, Odzhaev VB, Kozlov IP (1998) Ion-implanted polymers. In: Wise DL, Wnek GE, Trantolo DJ, Cooper TM, Gresser JD (eds) Electrical and optical polymer systems. Marcel Dekker, New York, pp 387–422

    Google Scholar 

  17. Popok VN (1999) Modification of surface layers of polymers by ion beams. Surf Invest 14:843–859

    Google Scholar 

  18. Lee EH (1999) Ion-beam modification of polymeric materials—fundamental principles and applications. Nucl Instr Meth Phys Res B 151:29–41

    Article  CAS  Google Scholar 

  19. Sviridov DV (2002) Chemical aspects of implantation of high-energy ions into polymeric materials. Rus Chem Rev 71:315–327

    Article  CAS  Google Scholar 

  20. Du G, Prigodin VN, Burns A, Joo J, Wang CS, Epstein AJ (1998) Unusual semimetallic behaviour of carbonized ion-implanted polymers. Phys Rev B 58:4485–4495

    Article  CAS  Google Scholar 

  21. Popok VN, Karpovich IA, Odzhaev VB, Sviridov DV (1999) Structure evolution of implanted polymers: buried conductive layers formation. Nucl Instr Meth Phys Res B 148:1106–1110

    Article  CAS  Google Scholar 

  22. Popok VN, Odzhaev VB, Azarko II, Kozlov IP, Sviridov DV, Hnatowicz V, Vacik J, Cervena J (2000) Multistage ion implantation of polyamide-6 films. Nucl Instr Meth Phys Res B 166–167:660–663

    Article  Google Scholar 

  23. Hadjichristov GB, Gueorguiev VK, Ivanov TzE, Marinov YG, Ivanov VG, Faulques E (2008) Silicon ion implanted PMMA for soft electronics. Organic Electron 9:1051–1060

    Article  CAS  Google Scholar 

  24. Gupta R, Kumar V, Goyal PK, Kumar S (2012) Optical characterization of poly(methyl methacrylate) implanted with low energy ions. Appl Surf Sci 263:334–338

    Article  CAS  Google Scholar 

  25. Cottin P, Lessard RA, Knystautas EJ, Roorda S (1999) Polymer waveguides under ion implantation: optical and chemical aspects. Nucl Instr Meth Phys Res B 151:97–100

    Article  CAS  Google Scholar 

  26. Moliton A, Antony R, Lucas B, Ratier B, Moussant C (1999) Ion beam applications in molecular and macromolecular physics (optics, electronics, optoelectronics). Opt Mater 12:199–203

    Article  CAS  Google Scholar 

  27. Rück DM (2000) Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion. Nucl Instr Meth Phys Res B 166–167:602–609

    Article  Google Scholar 

  28. Komarov FF, Leontyev AV, Grigoryev VV, Kamishan MA (2002) Ion implantation for local change of the optical constants of polymer films. Nucl Instr Meth Phys Res B 191:728–732

    Article  CAS  Google Scholar 

  29. Kozlov IP, Odzhaev VB, Karpovich IA, Popok VN, Sviridov DV (1998) Optical properties of ion-implanted polymer layers. J Appl Spectr 65:390–395

    Article  CAS  Google Scholar 

  30. Shekhawat N, Sharma A, Aggarwal S (2011) Refractive index engineering in polycarbonate implanted by 100 keV N+ ions. Opt Engineer 50:044601

    Article  CAS  Google Scholar 

  31. Shekhawat N, Aggarwal S, Sharma A, Sharma SK, Deshpande SK, Nair KGM (2011) Surface disordering and its correlations with properties in argon implanted CR-39 polymer. J Appl Phys 109:083513

    Article  CAS  Google Scholar 

  32. Lee Eh, Lewis MB, Blau PJ, Mansur LK (1991) Improved surface properties of polymer materials by multiple ion beam treatment. J Mater Res 6:610–628

    Article  CAS  Google Scholar 

  33. Ochsner R, Kluge A, Zechel-Malonn S, Gong L, Ryssel H (1993) Improvement of surface properties of polymers by ion implantation. Nucl Instr Meth Phys Res B 80(81):1050–1054

    Article  Google Scholar 

  34. Dong H, Bell T (1999) State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surf Coat Technol 111:29–40

    Article  CAS  Google Scholar 

  35. Rodriguez RJ, Garcia JA, Sanchez R, Perez A, Garrido B, Morante J (2002) Modification of surface mechanical properties of polycarbonate by ion implantation. Surf Coat Technol 158–159:636–642

    Article  Google Scholar 

  36. Iwaki M (2001) Ion surface treatments on organic materials. Nucl Instr Meth Phys Res B 175–177:368–374

    Article  Google Scholar 

  37. Suzuki Y (2003) Ion beam modification of polymers for the application of medical devices. Nucl Instr Meth Phys Res B 206:501–506

    Article  CAS  Google Scholar 

  38. Hwang I-T, Jung C-H, Kim D-K, Nho Y-C, Choi J-H (2009) Patterning of biomolecules on a poly(ε-caprolactone) film surface functionalized by ion implantation. Coll Surf B: Bionterfaces 74:375–379

    Article  CAS  Google Scholar 

  39. Ishikawa J, Tsuji H, Sato H, Gotoh Y (2007) Ion implantation of negative ions for cell growth manipulation and nervous system repair. Surf Coat Technol 201:8083–8090

    Article  CAS  Google Scholar 

  40. Gan BK, Kondyurin A, Bilek MMM (2007) Comparison of protein surface attachment on untreated and plasma immersion ion implantation treated polystyrene: protein islands and carpet. Langmuir 23:2741–2746

    Article  CAS  PubMed  Google Scholar 

  41. Švorčik V, Tomašova P, Dvořankova B, Hnatowicz V, Ochsner R, Ryssel H (2004) Fibroblasts adhesion on ion beam modified polyethylene. Nucl Instr Meth Phys Res B 215:366–372

    Article  CAS  Google Scholar 

  42. Cheng X, Kondyurin A, Bao S, Bilek MMM, Ye L (2017) Plasma immersion ion implantation of polyurethane shape memory polymer: surface properties and protein immobilization. Appl Sur Sci 416:686–695

    Article  CAS  Google Scholar 

  43. Pehrsson PE, Weber DC, Koon NC, Campanja JE, Rose SL (1984) Chemical and physical interactions in covalent polymers implanted with transition metals. Mater Res Soc Symp Proc 27:429–434

    Article  CAS  Google Scholar 

  44. Ruffino F, Torrisi V, Marletta G, Grimaldi MG (2012) Effects of the embedding kinetics on the surface nano-morphology of nano-grained Au and Ag films on PS and PMMA layers annealed above the glass transition temperature. Appl Phys A 107:669–683

    Article  CAS  Google Scholar 

  45. Bazarov VV, Petukhov Zhikharev VA, Khaibullin IB (1995) Conductivity of the granular metal films obtained by high dose ion implantation into PMMA. Mater Res Soc Symp Proc 388:417–422

    Article  CAS  Google Scholar 

  46. Wang Y, Bridwell LB, Giedd RE (1993) Composite conduction in ion-implanted polymers. J Appl Phys 73:474–476

    Article  CAS  Google Scholar 

  47. Stepanov AL, Abdullin SN, Khaibullin RI, Valeev VF, Osin YuN, Bazarov VV, Khaibullin IB (1995) Ion synthesis of colloidal silver nanoclusters in the organic substrate. Mater Res Soc Symp Proc 392:267–272

    Article  CAS  Google Scholar 

  48. Stepanov AL, Popok VN, Khaibullin IB, Kreibig U (2002) Optical properties of polymethylmethacrilate with implanted silver nanoparticles. Nucl Instr Meth Phys Res B 191:473–477

    Article  CAS  Google Scholar 

  49. Khaibullin RI, Zhikharev VA, Osin YuN, Zheglov EP, Khaibullin IB, Rameev BZ, Aktas B (2000) Structural and magnetic properties of iron and cobalt implanted silicone polymers. Nucl Instr Meth Phys Res B 166–167:897–902

    Article  Google Scholar 

  50. Boldyryeva H, Umeda N, Plaksin OA, Takeda Y, Kishimoto N (2005) High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Technol 196:373–377

    Article  CAS  Google Scholar 

  51. Salvadori MC, Cattani M, Teixeira FS, Brown IG (2008) Conducting polymer formed by low energy gold ion implantation. Appl Phys Lett 93:073102

    Article  CAS  Google Scholar 

  52. Maggioni G, Vomiero A, Carturan S et al (2004) Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation. Appl Phys Lett 85:5712–5714

    Article  CAS  Google Scholar 

  53. Nathawat R, Vijay YK, Kumar P, Kulriya P, Ganesan V, Sathe V (2008) Physically and chemically modified polycarbonate by metal ion implantation. Adv Polym Technol 27:143–151

    Article  CAS  Google Scholar 

  54. Popok VN (2005) Compositional and structural alterations of polymers under low-to-medium-energy ion implantation. In: Norris CP (ed) Surface science research. Nova Sci Publishers, New York, pp 147–193

    Google Scholar 

  55. Fink D (ed) (2004) Fundamentals of on-irradiated polymers. Springer-Verlag, Berlin

    Google Scholar 

  56. Fink D (ed) (2004) Transport processes in ion-irradiated polymers. Springer-Verlag, Berlin

    Google Scholar 

  57. Kondyurin A, Bilek MMM (2008) Ion beam treatment of polymers. Application aspects from medicine to space. Elsevier, Amsterdam

    Google Scholar 

  58. Apel P, Schulz A, Spohr R, Trautmann C, Vutsadakis V (1997) Tracks of very heavy ions in polymers. Nucl Instrum Meth Phys Res B 131:55–63

    Article  CAS  Google Scholar 

  59. Hnatowicz V (1999) Simple model of radial structure of latent tracks in polymers. Phys Stat Sol (b) 216:931–941

    Article  CAS  Google Scholar 

  60. De Cicco H, Saint-Martin G, Alurralde M, Bernaola OA, Filevich A (2001) Ion tracks in an organic material: application of the liquid drop model. Nucl Instr Meth Phys Res B 173:455–462

    Article  Google Scholar 

  61. Seitz F, Koehler J (1956) Displacement of atoms during irradiation. In: Seitz F, Turnbull D (eds) Solid state physics: advances in research and applications, vol 2. Academic Press, New York, pp 305–448

    Google Scholar 

  62. Sigmund P (1974) Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. Appl Phys Lett 25:169–171

    Article  Google Scholar 

  63. Kelly R (1977) Theory of thermal sputtering. Rad Eff 32:91–100

    Article  CAS  Google Scholar 

  64. Bitensky IS, Demirev P, Sundquist BUR (1993) On a model of fullerene formation from polymers under MeV ion impact. Nucl Instr Meth Phys Res B 82:356–361

    Article  CAS  Google Scholar 

  65. Vilensky AI, Zagorski DL, Apel PYu, Pervov NV, Mchedlishvili BV, Popok VN, Melnik NN (2004) Thermal regression of latent tracks in the polymer irradiated by high energy heavy ions. Nucl Instr Meth Phys Res B 173:294–299

    Article  CAS  Google Scholar 

  66. Licciardello A, Fragala ME, Compagnini G, Puglisi O (1997) Cross section of ion polymer interaction used to individuate single track regime. Nucl Instr Meth Phys Res B 122:589–593

    Article  CAS  Google Scholar 

  67. Ziegler JF, Biersack JP, Littmark MD (2008) The stopping and ranges of ions in matter. Lulu Press, Morrisville

    Google Scholar 

  68. Davenas J, Stevenson I, Celette N, Cambon S, Gardette JL, Rivaton A, Vignoud L (2002) Stability of polymers under ionising radiation: the many faces of radiation interactions with polymers. Nucl Instr Meth Phys Res B 191:653–661

    Article  CAS  Google Scholar 

  69. Calcagno L, Percolla R, Foti G (1995) Ion track effects on gel formation of polystyrene. Nucl Instr Meth Phys Res B 95:59–64

    Article  CAS  Google Scholar 

  70. Popok VN, Azarko II, Khaibullin RI, Stepanov AL, Hnatowicz V, Mackova A, Prasalovich SV (2004) Radiation-induced change of polyimide properties under high-fluence and high ion current density implantation. Appl Phys A 78:1067–1072

    Article  CAS  Google Scholar 

  71. Davenas J, Xu XL, Boiteux G, Sage D (1989) Relation between structure and electronic properties of ion irradiated polymers. Nucl Instr Meth Phys Res B 39:754–763

    Article  Google Scholar 

  72. Švorčik V, Endršt R, Rybka V, Arenholz E, Hnatowicz V, Černy F (1995) Nitrogen implantation into polyimide. Eur Polym J 31:189–191

    Article  Google Scholar 

  73. Lewis MB, Lee EH (1991) Residual gas and ion-beam analysis of ion-irradiated polymers. Nucl Instr Meth Phys Res B 61:457–465

    Article  Google Scholar 

  74. Švorčik V, Endršt R, Rybka V, Hnatowicz V, Černy F (1994) Modification of polyethyleneterephtalate by implantation of nitrogen ions. J Electrochem Soc 141:582–584

    Article  Google Scholar 

  75. Picq V, Ramillon JM, Balanzat E (1998) Swift heavy ions on polymers: hydrocarbon gas release. Nucl Instr Meth Phys Res B 146:496–503

    Article  CAS  Google Scholar 

  76. Marletta G, Iacona F (1993) Heat-induced versus particle beam-induced chemistry in polyimide. Nucl Instr Meth Phys Res B 80(81):1405–1409

    Google Scholar 

  77. Bridwell LB, Giedd RE, Youngqiang W, Mohite SS, Jahnke T, Brown IM (1991) Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation. Nucl Instr Meth Phys Res B 59(60):1240–1244

    Article  Google Scholar 

  78. Picq V, Balanzat E (1999) Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy. Nucl Instr Meth Phys Res B 151:76–83

    Article  CAS  Google Scholar 

  79. Mackova A, Bocan J, Khaibullin RI, Valeev VF, Slepicka P, Sajdl P, Svorcik V (2009) Characterisation of Ni+ implanted PEEK, PET and PI. Nucl Instr Meth Phys Res B 267:1549–1552

    Article  CAS  Google Scholar 

  80. Sharma T, Aggarwal S, Sharma A, Kumar S, Kanjilal D, Deshpande SK, Goyal PS (2007) Effect of nitrogen ion implantation on the optical and structural characteristics of CR-39 polymer. J Appl Phys 102:063527

    Article  CAS  Google Scholar 

  81. Popok VN, Khaibullin RI, Toth A, Beshliu V, Hnatowicz V, Mackova A (2003) Compositional alteration of polyimide under high fluence implantation by Co+ and Fe+ ions. Surf Sci 532–535:1034–1039

    Article  CAS  Google Scholar 

  82. Hnatowicz V, Kvitek J, Švorčik V, Rybka V (1993) Oxidation of polyethylene implanted with As ions to different extents. Eur Polym J 29:1255–1258

    Article  CAS  Google Scholar 

  83. Hnatowicz V, Kvitek J, Švorčik V, Rybka V (1994) Oxygen incorporation in polyethylene and polypropylene implanted with F+, As+ and I+ ions at high dose. Appl Phys A 58:349–352

    Article  Google Scholar 

  84. Hnatowicz V, Kvitek J, Peřina V, Švorčik V, Rybka V, Popok V (1994) Anomalous diffusion of Pb atoms into polyethylene implanted with F and As ions to different doses. Nucl Instr Meth Phys Res B 93:282–287

    Article  CAS  Google Scholar 

  85. Popok VN, Azarko II, Odzhaev VB, Toth A, Khaibullin RI (2001) High fluence ion beam modification of polymer surfaces: EPR and XPS study. Nucl Instr Meth Phys Res B 178:305–310

    Article  CAS  Google Scholar 

  86. Odzhaev VB, Azarko II, Karpovich IA, Kozlov IP, Popok VN, Sviridov DV, Hnatowicz V, Jankovskij ON, Rybka V, Svorcik V (1995) The properties of polyethylene and polyamide implanted with B ions to high doses. Mater Lett 23:163–166

    Article  CAS  Google Scholar 

  87. Hnatowicz V, Peřina V, Hnatowicz V, Voseček V, Novotny J, Vacik J, Švorčik V, Rybka V, Kluge A (2000) Degradation of polyimide and polyethyleneterephtalate irradiated with 150 and 200 keV Ar+ ions, studied by RBS and ERD techniques. Nucl Instr Meth Phys Res B 161–163:1099–1103

    Article  Google Scholar 

  88. Popok VN, Odzhaev VB, Kozlov IP, Azarko II, Karpovich IA, Sviridov DV (1997) Ion beam effects in polymer films: structure evolution of the implanted layer. Nucl Instr Meth Phys Res B 129:60–64

    Article  CAS  Google Scholar 

  89. Fink D, Ibel K, Goppelt P, Biersack V, Wang L, Behar M (1990) Ion beam induced carbon clusters in polymers. Nucl Instr Meth Phys Res B 46:342–346

    Article  Google Scholar 

  90. Hnatowicz V, Kvitek J, Svorcik V, Rybka V, Popok V (1994) Oxygen incorporation in polyethylene implanted with 150 keV Sb ions. Czech J Phys 44:621–627

    Article  CAS  Google Scholar 

  91. Zaki MF, El Tabay MM, Radwan RM (2016) Effect of Ar bombardment on the electrical and optical properties of low-density polyethylene films. Pramana J Phys 87:67

    Article  CAS  Google Scholar 

  92. Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957

    Article  CAS  Google Scholar 

  93. Rizk RAM, Abdul-Kader AM, Ali ZI, Ali M (2009) Effect of ion bombardment on the optical properties of LDPE/EPDM polymer blends. Vacuum 83:805–808

    Article  CAS  Google Scholar 

  94. Calcagno L, Foti G (1991) Ion irradiation of polymers. Nucl Instr Meth Phys Res B 59(60):1153–1158

    Article  Google Scholar 

  95. Kondyurin A, Khaibullin R, Gavrilov N, Popok V (2002) Pulse and continuous ion beam treatment of polyethylene. Vacuum 68:341–347

    Article  CAS  Google Scholar 

  96. Schwarz F, Thorwarth G, Stritzker B (2009) Synthesis of silver and copper nanoparticle containing a-C: Hby ion irradiation of polymers. Sol State Sci 11:1819–1823

    Article  CAS  Google Scholar 

  97. Hnatowicz V, Hnatowicz V, Kvitek J, Peřina V, Švorčik V, Rybka V (1993) RBS study of oxidation processes in polypropylene and polyethylene implanted with fluorine ions. Nucl Instr Meth B 80(81):1059–1062

    Article  Google Scholar 

  98. Jankovskij O, Švorčik V, Rybka V, Hnatowicz V, Popok V (1995) Nucl Instr Meth Phys Res B 95:192–196

    Article  CAS  Google Scholar 

  99. Hnatowicz V, Vacik J, ŠvorčikV Rybka V, Popok V, Jankovskij O, Fink D, Klett R (1996) Iodine diffusion and trapping in polyethylene implanted with 150 keV F and As ions to different fluences. Nucl Instr Meth Phys Res B 114:81–87

    Article  CAS  Google Scholar 

  100. Hnatowicz V, Vacik J, Červena J, Švorčik V, Rybka V, Popok V, Fink D, Klett R (1995) Doping of ion implanted polyethylene with metallocarborane. Nucl Instr Meth Phys Res B 105:241–244

    Article  CAS  Google Scholar 

  101. Hnatowicz V, Vacik J, Červena J, Švorčik V, Rybka V, Fink D, Klett R (1997) Doping of ion irradiated polyethyleneterephatalate from water solution of LiCl. Phys Stat Sol (a) 159:327–333

    Article  CAS  Google Scholar 

  102. Popok VN, Khaibullin RI, Bazarov VV, Valeev VF, Hnatowicz V, Mackova A, Odzhaev VB (2002) Anomalous depth distribution of Fe and Co atoms in polyimide implanted to high fluence. Nucl Instr Meth Phys Res B 191:695–699

    Article  CAS  Google Scholar 

  103. Mackova A, Hnatowicz V, Perina V, Popok VN, Khaibullin RI, Bazarov VV, Odzhaev VB (2002) High-fluence implantation of iron into polyimide. Surf Coat Technol 158–159:395–398

    Article  Google Scholar 

  104. Mackova A, Malinsky P, Miksova R, Hnatowicz V, Khaibullin RI, Slepicka P, Svorcik V (2014) Characterisation of PEEK, PET and PI implanted with 80 keV Fe+ ions to high fluencies. Nucl Instr Meth Phys Res B 331:176–181

    Article  CAS  Google Scholar 

  105. Zhou G, Wang R, Zhang TH (2010) Analysis of surface morphological change in PET films induced by tungsten ion implantation. Nucl Instr Meth Phys Res B 268:2698–2701

    Article  CAS  Google Scholar 

  106. Popok VN, Hanif M, Mackova A, Miksova R (2015) Structure and plasmonic properties of thin PMMA layers with ion-synthesized Ag nanoparticles. J Polym Sci B Polym Phys 53:664–672

    Article  CAS  Google Scholar 

  107. Möller W, Eckstein W, Biersack JP (1988) TRIDYN-binary collision simulation of atomic collisions and dynamic composition changes in solids. Comput Phys Commun 51:355–368

    Article  Google Scholar 

  108. Wang Y, Mohite SS, Bridwell LB, Giedd RE, Sofield CJ (1993) Modification of high temperature and high performance polymers by ion implantation. J Mater Res 8:388–402

    Article  CAS  Google Scholar 

  109. Colwell JM, Wentrup-Byrne E, Bell JM, Wielunski LS (2003) A study of the chemical and physical effects of ion implantation of micro-porous and nonporous PTFE. Surf Coat Technol 168:216–222

    Article  CAS  Google Scholar 

  110. Fink D, Biersack JP, Chen JT, Stadele M, Tjan K, Behar M, Olovieri CA, Zawislak FC (1985) Distributions of light ions and foil destruction after irradiation of organic polymers. J Appl Phys 58:668–676

    Article  CAS  Google Scholar 

  111. Fink D, Behar M, Kaschny J, Klett R, Chadderton LT, Hnatowicz V, Vacik J, Wang L (1996) On the redistribution of 6Li+ ions implanted into polypropylene foils. Appl Phys A 62:359–367

    Google Scholar 

  112. Vacik J, Červena J, Fink D, Klett R, Hnatowicz V, Popok V, Odzhaev V (1997) High fluence boron implantation into polymers. Rad Eff Def Sol 143:139–156

    Article  CAS  Google Scholar 

  113. Lipatov Yu, Feinermann A (1979) Surface tension and surface free energy of polymers. Adv Colloid Interface Sci 11:195–233

    Article  CAS  Google Scholar 

  114. Doering R, Nishi Y (eds) (2008) Handbook of semiconductor manufacturing technology. CRC Press, Boca Raton

    Google Scholar 

  115. Popok VN, Hanif M, Ceynowa FA, Fojan P (2017) Immersion of low-energy deposited metal clusters into poly(methylmethacrylate). Nucl Instr Meth Phys Res B 409:91–95

    Article  CAS  Google Scholar 

  116. Prakash J, Pivin JC, Swart HC (2015) Noble metal nanoparticles embedding into polymeric materials: from fundamentals to applications. Adv Colloid Interface Sci 226:187–202

    Article  CAS  PubMed  Google Scholar 

  117. Niklaus M, Rosset S, Dadras M, Dubois P, Shea H (2008) Microstructure of 5 keV gold-implanted polydimethylsiloxane. Scripta Mater 59:893–896

    Article  CAS  Google Scholar 

  118. Petukhov VY, Ibragimova MI, Khabibullina NR, Shulyndin SV, Osin YuN, Zheglov EP, Vakhonina TA, Khaibullin IB (2001) The influence of the polymer matrix structure on the ion beam synthesis of metal-polymer thin films. Polym Sci Ser A 43:1154–1162

    Google Scholar 

  119. Malinsky P, Mackova A, Hnatowicz V, Khaibullin RI, Valeev VF, Slepička P, Švorčik V, Slouf M, Peřina V (2012) Properties of polyimide, polyetheretherketone and polyethyleneterephthalate implanted by Ni ions to high fluences. Nucl Instr Meth Phys Res B 272:396–399

    Article  CAS  Google Scholar 

  120. Abdullin SN, Stepanov AL, Osin YuN, Khaibullin RI, Khaibullin IB (1998) Synthesis of metallic dispersion and continuous films in the viscous polymer by implantation of cobalt ions. Surf Coat Technol 106:214–219

    Article  CAS  Google Scholar 

  121. Salvadori MC, Teixeira FS, Sgubin LG, Cattani M, Brown IG (2014) Surface modification by metal ion implantation forming metallicnanoparticles in an insulating matrix. Appl Surf Sci 310:158–163

    Article  CAS  Google Scholar 

  122. Di Girolamo G, Massaro M, Piscopiello E, Tapfer L (2010) Metal ion implantation in inert polymers for strain gauge applications. Nucl Instr Meth Phys Res B 268:2878–2882

    Article  CAS  Google Scholar 

  123. Umeda N, Bandourko VV, Vasilets VN, Kishimoto N (2003) Metal precipitation process in polymers induced by ion implantation of 60 keV Cu. Nucl Instr Meth Phys Res B 206:657–662

    Article  CAS  Google Scholar 

  124. Khaibullin RI, Rameev BZ, Okay C, Stepanov AL, Zhikharev VA, Khaibullin IB, Tagirov LR, Aktas B (2004) Ion beam synthesis of magnetic nanopartciles in polymers. In: Aktas B, Tagirov L, Mikailov F (eds) Nanostructured magnetic materials and their applications. NATO science series: II mathematics, physics and chemistry, vol 143. Kluwer, Dordrecht, pp 33–54

    Chapter  Google Scholar 

  125. Khaibullin RI, Popok VN, Bazarov VV, Zheglov EP, Rameev BZ, Okay C, Tagirov LR, Aktas B (2002) Ion synthesis of iron granular films in polyimide. Nucl Instr Meth Phys Res B 191:810–814

    Article  CAS  Google Scholar 

  126. Petukhov VYu, Khabibullina NR, Ibragimova MI, Bukharaev AA, Biziaev DA, Zheglov EP, Gumarov GG, Müller R (2007) Magnetic properties of thin metal-polymer films prepared by high-dose ion-beam implantation of iron and cobalt ions into polyethylene terephtalate. Appl Magn Reson 32:345–361

    Article  CAS  Google Scholar 

  127. Okay C, Rameev BZ, Khaibullin RI, Okutan M, Yildiz F, Popok VN, Aktas B (2006) Ferromagnetic resonance study of iron implanted PET foils. Phys Stat Sol (a) 203:1525–1532

    Article  CAS  Google Scholar 

  128. Popok VN (2012) Ion implantation of polymers: formation of nanoparticulate materials. Rev Adv Mater Sci 30:1–26

    CAS  Google Scholar 

  129. Perez A, Melinon P, Dupuis V et al (1997) Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J Phys D Appl Phys 30:709–721

    Article  CAS  Google Scholar 

  130. Milani P, Iannotta S (1999) Cluster beam synthesis of nanostructured materials. Springer, Berlin

    Book  Google Scholar 

  131. Meiwes-Broer KH (ed) (2000) Metal clusters at surfaces. Springer, Berlin

    Google Scholar 

  132. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44:1–49

    Article  CAS  Google Scholar 

  133. Popok VN, Prasalovich SV, Campbell EEB (2004) Surface nanostructuring by implantation of cluster ions. Vacuum 76:265–272

    Article  CAS  Google Scholar 

  134. Popok VN, Campbell EEB (2006) Beams of atomic clusters: effects on impact with solids. Rev Adv Mater Res 11:19–45

    CAS  Google Scholar 

  135. Toyoda N, Yamada I (2008) Gas cluster ion beam equipment and applications for surface processing. IEEE Trans Plasma Sci 36:1471–1488

    Article  CAS  Google Scholar 

  136. Popok VN (2014) Cluster ion implantation in graphite and diamond: radiation damage and stopping of cluster constituents. Rev Adv Mater Sci 38:7–16

    CAS  Google Scholar 

  137. De Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676

    Article  Google Scholar 

  138. Hagena OF (1992) Cluster ion sources. Rev Sci Instr 64:2374–2379

    Article  Google Scholar 

  139. Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266–3271

    Article  CAS  Google Scholar 

  140. Popok VN, Prasalovich SV, Samuelsson M, Campbell EEB (2002) Design and capabilities of a cluster implantation and deposition apparatus: first results on hillock formation under energetic cluster ion bombardment. Rev Sci Instr 73:4283–4287

    Article  CAS  Google Scholar 

  141. Popok VN, Barke I, Campbell EEB, Meiwes-Broer K-H (2011) Cluster-surface interaction: from soft landing to implantation. Surf Sci Rep R 66:347–377

    Article  CAS  Google Scholar 

  142. Ravagnan L, Divitini G, Rebasti S, Marelli M, Piseri P, Milani P (2009) Poly(methyl methacrylate)–palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces. J Phys D Appl Phys 42:082002

    Article  CAS  Google Scholar 

  143. Solar P, Kylian O, Polonskyi O, Artemenko A, Arzhakov D, Drabik M, Slavinska D, Vandrovcova M, Bacakova L, Biederman H (2012) Nanocomposite coatings of Ti/C: H plasma polymer particles providing a surface with variable nanoroughness. Surf Coat Technol 206:4335–4342

    Article  CAS  Google Scholar 

  144. Peter T, Rehders S, Schürmann U, Strunskus T, Zaporojtchenko V, Faupel F (2013) High rate deposition system for metal-cluster/SiOxCyHz–polymer nanocomposite thin films. J Nanopart Res 15:1710–1715

    Article  Google Scholar 

  145. Cardia R, Melis C, Colombo L (2013) Neutral-cluster implantation in polymers by computer experiments. J Appl Phys 113:224307

    Article  CAS  Google Scholar 

  146. Kovacs GJ, Vincett PS (1984) Subsurface particle monolayer and film formation in softenable substrates: techniques and thermodynamic criteria. Thin Sol Films 111:65–81

    Article  CAS  Google Scholar 

  147. Corbelli G, Ghisleri C, Marelli M, Milani P, Ravagnan L (2011) Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv Mater 23:4504–4508

    Article  CAS  PubMed  Google Scholar 

  148. Hanif M, Juluri RR, Chirumamilla M, Popok VN (2016) Poly (methyl methacrylate) composites with size-selected silver nanoparticles fabricated using cluster beam technique. J Polym Sci B Polym Phys 54:1152–1159

    Article  CAS  Google Scholar 

  149. Ceynowa FA, Chirumamilla M, Popok VN (2017) Polymer composite films with size-selected metal nanoparticles fabricated by cluster beam technique. In: Proceedings of 12th international conference interaction of radiation with solids, Minsk, Sept 19–22, pp 301–303

    Google Scholar 

  150. Nathawat R, Kumar A, Kulshrestha V, Vijay YK, Kobayashi T, Kanjilal D (2008) Study of surface activation of PET by low energy (keV) Ni+ and N+ ion implantation. Nucl Instr Meth Phys Res B 266:4749–4756

    Article  CAS  Google Scholar 

  151. Kondyurin A, Gan BK, Bilek MMM, McKenzie DR, Mizuno K, Wuhrer R (2008) Argon plasma immersion ion implantation of polystyrene films. Nucl Instr Meth Phys Res B 266:1074–1084

    Article  CAS  Google Scholar 

  152. Chen JS, Sun Z, Guo PS, Zhang ZB, Zhu DZ, Xu HJ, Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene. J Appl Phys 93: 5103–5108

    Article  CAS  Google Scholar 

  153. Kondyurin A, Gan BK, Bilek MMM, Mizuno K, McKenzie DR (2006) Etching and structural changes of polystyrene films during plasma immersion ion implantation from argon plasma. Nucl Instr Meth Phys Res B 251:413–418

    Article  CAS  Google Scholar 

  154. Mesyats G, Klyachkin Yu, Gavrilov N, Kondyurin A (1999) Adhesion of polytetrafluorethylene modified by an ion beam. Vacuum 52:285–289

    Article  CAS  Google Scholar 

  155. Fu RKY, Cheung ITL, Mei YF, Shek CH, Siu GG, Chu PK, Yang WM, Leng YX, Huang YX, Tian XB, Yang SQ (2005) Surface modification of polymeric materials by plasma immersion ion implantation. Nucl Instr Meth Phys Res B 237:417–421

    Article  CAS  Google Scholar 

  156. Bačakova L, Mareš V, Bottone MG, Pellicciari C, Lisa V, Švorčik V (2000) Fluorine ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture. J Biomed Mater Res 49:369–379

    Article  PubMed  Google Scholar 

  157. Walachova K, Švorčik V, Bačakova L, Hnatowicz V (2002) Colonization of ion-modified polyethylene with vascular smooth muscle cells in vitro. Biomaterials 23:2989–2996

    Article  CAS  PubMed  Google Scholar 

  158. Marletta G (2010) Ion-beam modification of polymer surface for biological applications. In: Bernas H (ed) Materials science with ion beams, Topics Appl Phys, vol 116. Springer-Verlag, Berlin, pp 345–369

    Chapter  Google Scholar 

  159. Bilek MMM (2014) Biofunctionalization of surfaces by energetic ion implantation: review of progress on applications in implantable biomedical devices and antibody microarrays. Appl Surf Sci 310:3–10

    Article  CAS  Google Scholar 

  160. Han ZJ, Tay BK (2009) Ti–PS nanocomposites by plasma immersion ion implantation and deposition. Nucl Instr Meth. Phys Res B 267:496–501

    Article  CAS  Google Scholar 

  161. Zare Y, Shabani I (2016) Polymer/metal nanocomposites for biomedical applications. Mater Sci Engineer C 60:195–203

    Article  CAS  Google Scholar 

  162. Prakash S, Charabarty T, Ak Singh, Shahi VK (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens Bioelectron 41:43–53

    Article  CAS  PubMed  Google Scholar 

  163. Rao GR, Wang ZL, Lee EH (1993) Microstructural effects on surface mechanical properties of ion implanted polymers. J Mater Res 8:927–933

    Article  CAS  Google Scholar 

  164. Rao GR, Monar K, Lee EH, Treglio JR (1994) Metal ion implantation effects on surface properties of polymers. Surf Coat Technol 64:69–74

    Article  CAS  Google Scholar 

  165. Rao GR, Lee EH, Bhattacharya R, McCormick AW (1995) Improved wear properties of high energy ion-implanted polycarbonate. J Mater Res 10:190–201

    Article  CAS  Google Scholar 

  166. Lee EH, Rao GR, Lewis MB, Mansur LK (1993) Ion beam application for improved polymer surface properties. Nucl Instr Meth Phys Res B 74:326–330

    Article  Google Scholar 

  167. Pivin JC (1995) Contribution of ionizations and atomic displacements to the hardening of ion-irradiated polymers. Thin Sol Films 263:185–193

    Article  CAS  Google Scholar 

  168. Zhang J, Ye X, Yu X, Li H (2001) Radiation damage and wettability change of low energy C+ implanted polytetrafluoroethylene. Mater Sci Engineer B 84:200–204

    Article  Google Scholar 

  169. Rao GR, Lee EH, Yao X, Brown IG (1995) Effects of metal-ion implantation on wear properties of polypropylene. J Mater Sci 30:3903–3908

    Article  CAS  Google Scholar 

  170. Niklaus M, Rosset S, Dubois P, Shea HR (2009) Comparison of two metal ion implantation techniques for fabrication of gold and titanium based compliant electrodes on polydimethylsiloxane. Mater Res Soc Symp Proc 1188:LL03–LL09

    Article  Google Scholar 

  171. Niklaus M, Shea HR (2011) Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater 59:830–840

    Article  CAS  Google Scholar 

  172. Chen T, Yao S, Wang K, Wang H, Zhou S (2009) Modification of the electrical properties of polyimide by irradiation with 80 keV Xe ions. Surf Coat Technol 203:3718–3721

    Article  CAS  Google Scholar 

  173. Moliton A, Lucas B, Moreau C, Friend RH, Francois B (1994) Francois Ion implantation in conjugated polymers: mechanisms for generation of charge carriers. Philos Mag B 69:1155–1171

    Article  CAS  Google Scholar 

  174. Wasserman B (1986) Fractal nature of electrical conductivity in ion-implanted polymers. Phys Rev B 34:1926–1931

    Article  CAS  Google Scholar 

  175. Davenas J, Thevenard P (1993) The multi-aspects of ion beam modification of insulators. Nucl Instr Meth Phys Res B 80/81:1021–1027

    Article  Google Scholar 

  176. Bratko J, Hall BO, Schoch KF Jr (1986) Highly conductive poly(phenylene sulfide) prepared by high-energy ion irradiation. J Appl Phys 59:1111–1116

    Article  Google Scholar 

  177. Aleshin AN, Gribanov AV, Dobrodumov AV, Suvorov AV, Shlimak IS (1989) Electro-physical properties of polyimide PM films treated by ion bombardment. Sov Phys Sol State 31:6–12

    Google Scholar 

  178. Mott NF, Devis EA (1979) Electronic processes in non-crystalline materials. Clarendon, Oxford

    Google Scholar 

  179. Bridwell LB, Giedd RE, Wang YQ, Mohite SS, Jahnke T, Brown IM, Bedell CJ, Sofield CJ (1991) Ion implantation of polymers for electrical conductivity enhancement. Nucl Instr Meth Phys Res B 57:656–659

    Article  Google Scholar 

  180. Komarov FF, Leontyev AV, Grigoryev VV (2000) Electrophysical properties of organic materials irradiated with accelerated ions. Nucl Instr Meth Phys Res. B 166–167:650–654

    Article  Google Scholar 

  181. Švorčik V, Rybka V, Miček I, Popok V, Jankovskij O, Hnatowicz V, Kvitek J (1994) Structure and properties of polymers modified by ion implantation. Eur Polym J 30:1411–1415

    Article  Google Scholar 

  182. Lee PA, Ramakrishnan TV (1985) Disordered electronic systems. Rev Mod Phys 57:287–337

    Article  CAS  Google Scholar 

  183. Wu Y, Zhang T, Zhang H, Zhang X, Deng Zh, Zhou G (2000) Electrical properties of polymer modified by metal ion implantation. Nucl Instr Meth Phys Res B 169:89–93

    Article  CAS  Google Scholar 

  184. Teixeira FS, Salvadori MC, Cattani M, Brown IG (2009) Gold-implanted shallow conducting layers in polymethylmethacrylate. J Appl Phys 105:064313

    Article  CAS  Google Scholar 

  185. Mackova A, Malinsky P, Miksova R, Pupikova H, Khaibullin RI, Valeev VF, Svorcik V, Slepicka P (2013) Annealing of PEEK, PET and PI implanted with Co ions at high fluencies. Nucl Instr Meth Phys Res B 307:598–602

    Article  CAS  Google Scholar 

  186. Tie M, Dhirani A-A (2015) Conductance of molecularly linked gold nanoparticle films across an insulator-to-metal transition: from hopping to strong Coulomb electron-electron interactions and correlations. Phys Rev B 91:155131

    Article  CAS  Google Scholar 

  187. Popok VN, Lukashevich MG, Lukashevich SM, Khaibullin RI, Bazarov VV (2004) Charge carrier transport in polyimide with co nanoparticles formed by ion implantation. Surf Sci 566–568:327–331

    Article  CAS  Google Scholar 

  188. Lukashevich MG, Popok VN, Volobuev VS, Melnikov AA, Khaibullin RI, Bazarov VV, Wieck A, Odzhaev VB (2010) Magnetoresistive effect in PET films with iron nanoparticles synthesised by ion implantation. Open Appl Phys J 3:1–5

    Article  CAS  Google Scholar 

  189. Vionnet-Menot S, Grimaldi C, Maeder T, Strässler S, Ryser P (2005) Tunneling-percolation origin of nonuniversality: theory and experiments. Phys Rev B 71:064201

    Article  CAS  Google Scholar 

  190. Davenas J, Thevenard P (1991) Electronic structure characterization of ion beam modified polyimide by optical absorption and reflection. Nucl Instr Meth Phys Res B 59(60):1249–1252

    Article  Google Scholar 

  191. Rück DM, Schulz J, Deusch N (1997) Ion irradiation induced chemical changes of polymers used for optical applications. Nucl Instr Meth Phys Res B 131:149–158

    Article  Google Scholar 

  192. Hadjichristov G, Ivanov V, Faulques E (2008) Reflectivity modification of polymethylmethacrylate by silicon ion implantation. Appl Surf Sci 254:4820–4827

    Article  CAS  Google Scholar 

  193. Tsvetkova T, Balabanov S, Avramov L, Borisova E, Angelov I, Sinning S, Bischoff L (2009) Photoluminescence enhancement in Si implanted PMMA. Vacuum 83:S252–S255

    Article  CAS  Google Scholar 

  194. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  195. Flytzanis C, Hache F, Klein MC, Ricard D, Rousignol P (1991) Nonlinear optics in composite materials. Elsevier, Amsterdam

    Google Scholar 

  196. De Julian Fernandez C, Manera MG, Spadavecchia J et al (2005) Study of the gas optical sensing properties of Au-polyimide nanocomposite films prepared by ion implantation. Sens Actuat B 111–112:225–229

    Article  CAS  Google Scholar 

  197. Gao W, Chen G, Xu W, Yang C, Xu S (2014) Surface-enhanced Raman scattering (SERS) chips made from metal nanoparticle-doped polymer fibres. RSC Adv 4:23838–23845

    Article  CAS  Google Scholar 

  198. Fateixa S, Nogueira HIS, Trindade T (2015) Hybrid nanostructures for SERS: materials development and chemical detection. Phys Chem Chem Phys 17:21046–21071

    Article  CAS  PubMed  Google Scholar 

  199. Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194

    Article  PubMed  CAS  Google Scholar 

  200. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24

    Article  CAS  PubMed  Google Scholar 

  201. Hedayati MK, Javaherirahim M, Mozooni B et al (2011) An omnidirectional transparent conducting-metal-based plasmonic nanocomposite. Adv Mater 23:5410–5414

    Article  CAS  PubMed  Google Scholar 

  202. Elbahri M, Hedayati MK, Chakravadhanula VSK, Jamali M, Strunkus T, Zaporojtchenko V, Faupel F (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23:1993–1997

    Article  CAS  PubMed  Google Scholar 

  203. Yuguang W, Tonghe Z, Andong L, Gu Z (2002) The nano-structure and properties of Ag-implanted PET. Surf Coat Technol 157:262–266

    Article  Google Scholar 

  204. Boldyryeva H, Kishimoto N, Umeda N, Kondo K, Plaksin OA, Takeda Y (2004) Surface modification and nanoparticle formation by negative ion implantation of polymers. Nucl Instr Meth Phys Res B 219–220:953–956

    Article  CAS  Google Scholar 

  205. Stepanov AL, Popok VN (2004) Nanostructuring of silicate glass under low-energy Ag-ion implantation. Surf Sci 566–568:1250–1254

    Article  CAS  Google Scholar 

  206. Popok VN, Stepanov AL, Odzhaev VB (2005) Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties. J Appl Spectr 72(2):229–234

    Article  CAS  Google Scholar 

  207. Popok VN, Gromov AV, Nuzhdin VI, Stepanov AL (2010) Optical and AFM study of ion-synthesised silver nanoparticles in thin surface layers of SiO2 glass. J Non-Cryst Sol 356:1258–1261

    Article  CAS  Google Scholar 

  208. Minnai C, Milani P (2015) Metal-polymer nanocomposite with stable plasmonic tuning under cyclic strain conditions. Appl Phys Lett 107:073106

    Article  CAS  Google Scholar 

  209. Minnai C, Di Vice M, Milani P (2017) Mechanical-optical-electro modulation by stretching a polymer-metal nanocomposite. Nanotechnology 28:355702

    Article  PubMed  CAS  Google Scholar 

  210. Hanif M, Juluri RR, Fojan P, Popok VN (2016) Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing. Biointerface Res Appl Chem 6(5):1564–1568

    CAS  Google Scholar 

  211. Magrupov MA (1981) Semiconducting pyropolymers. Russ Chem Rev 50:1104–1117

    Article  Google Scholar 

  212. Azarko II, Hnatowicz V, Kozlov IP, Kozlova EI, Odzhaev VB, Popok VN (1994) EPR-spectroscopy of the ion implanted polymer films. Phys Stat Sol (a) 146:K23–K27

    Article  CAS  Google Scholar 

  213. Goldberg IB, Crove HR, Newman PR, Heeger AJ, MacDiarmid AG (1979) Electron spin resonance of polyacetylene and AsF5-doped polyacetylene. Chem Phys 70(1979):1132–1136

    CAS  Google Scholar 

  214. Zhuravleva TS (1987) Studies of polyacetylene by magnetic resonance methods. Russ Chem Rev 56:69–80

    Article  Google Scholar 

  215. Polyboyarov VA, Andryushkova OV, Bulynnikova M (1992) Change of structure and composition of organic substances under electron irradiation. Sibirskij Khim Zhurnal 5:118–124 (in Russian)

    Google Scholar 

  216. Ogawa K (1988) Magnetic recording medium and method for making the same. US Patent No 4751100

    Google Scholar 

  217. Petukhov V, Zhikharev V, Ibragimova M, Zheglov E, Bazarov V, Khaibullin I (1996) Ions synthesis of thin granular ferromagnetic films in polymethylmethacrylate. Sol State Comm 97:361–364

    Article  CAS  Google Scholar 

  218. Khaibullin RI, Osin YuN, Stepanov AL, Khaibullin IB (1998) Ion synthesis of Fe and Ag granular films in viscous and solid state polymers. Vacuum 51:289–294

    Article  CAS  Google Scholar 

  219. Popok VN, Lukashevich MG, Gorbachuk NI, Odzhaev VB, Khaibullin RI, Khaibullin IB (2006) Magnetoresistive effect and impedance spectroscopy of Co-implanted polyimide. Phys Stat Sol (a) 203:1545–1549

    Article  CAS  Google Scholar 

  220. Lukashevich M, Battle X, Labarta A, Popok V, Zhikharev VA, Khaibullin RI, Odzhaev VB (2007) Modification of magnetic properties of polyethyleneterephthalate by iron ion implantation. Nucl Instr Meth Phys Res B 257:589–592

    Article  CAS  Google Scholar 

  221. Kharchenko A, Lukashevich M, Popok V, Khaibullin R, Vallev V, Bazarov V, Petracic O, Wieck A, Odzhaev V (2013) Correlation of electronic and magnetic properties of thin polymer layers with cobalt nanoparticles. Part Part Syst Character 30:180–184

    Article  CAS  Google Scholar 

  222. Kharchenko A, Lukashevich M, Nuzhdin VI, Khaibullin RI, Odzhaev VB (2013) Modification of the magnetic properties of polyimide films by cobalt ion implantation. Phys Sol State 55:88–93

    Article  CAS  Google Scholar 

  223. Rameev BZ, Aktas B, Khaibullin RI, Zhikharev VA, Osin YuN, Khaibullin IB (2000) Magnetic properties of iron-and cobalt-implanted silicone polymers. Vacuum 58:551–560

    Article  CAS  Google Scholar 

  224. Pivin JC, Khaibullin RI, Rameev BZ, Dubus M (2004) Magnetic resonances of Fe and Ni nanoparticles in films of silicon suboxide produced by ion irradiation of triethoxysilane gels containing Fe or Ni solute atoms. J Non-Cryst Sol 333:48–55

    Article  CAS  Google Scholar 

  225. Malik R, Sharma R, Kanjilal D, Annapoorni S (2009) Alignment of magnetic clusters in polymer using Ar ion beam. J Phys D Appl Phys 42:235501

    Article  CAS  Google Scholar 

  226. Khaibullin IB, Khaibullin RI, Abdullin SN, Stepanov AL, Osin YuN, Bazarov VV, Kurzin SP (1997) Ion metal synthesis in viscous organic matter. Nucl Instr Meth Phys Res B 127(128):685–688

    Article  Google Scholar 

  227. Rameev B, Okay C, Yildizm F, Khaibullin RI, Popok VN, Aktas B (2004) Ferromagnetic resonance investigations of cobalt implanted polyimides. J Magnet Magn Mater 278:164–171

    Article  CAS  Google Scholar 

  228. Tian-Xiang C, Shu-De Y, Wei H, Tao F, Lin L, Sheng-Qiang Z (2009) Charge transport and magnetotransport properties of polyimide irradiated by 80 keV Co ions. Chin Phys Lett 26:087201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Popok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popok, V.N. (2019). High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition. In: Kumar, V., Chaudhary, B., Sharma, V., Verma, K. (eds) Radiation Effects in Polymeric Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05770-1_3

Download citation

Publish with us

Policies and ethics