Skip to main content

Multi-disciplinary Engineering of Production Systems – Challenges for Quality of Control Software

  • Conference paper
  • First Online:
Software Quality: The Complexity and Challenges of Software Engineering and Software Quality in the Cloud (SWQD 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 338))

Included in the following conference series:

Abstract

Production systems and their inherent control systems are developed within an increasingly multi-disciplinary and increasingly complex engineering process which is, in addition, increasingly interlinked with the other life cycle phases of the production system. Surely this will have consequences for efficiency and correctness of the control system engineering.

Within this paper bordering conditions and challenges of this multi-disciplinary engineering process will be discussed and a centralized data logistics will be presented as one possible mean for handling the identified challenges. Thereby, requirements to the further development in the field of standardized data exchange are discussed possibly supported by software industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biffl, S., Lüder, A., Gerhard, D. (eds.): Multi-Disciplinary Engineering for Cyber-Physical Production Systems. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9. ISBN 978-3-319-56344-2

    Book  Google Scholar 

  2. VDI/VDE: Industrie 4.0 -Wertschöpfungsketten, VDI/VDE Gesellschaft Mess- und Automatisierungs-technik, Status Report, April 2014

    Google Scholar 

  3. Vogel-Heuser, B.: Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.4. SRT, pp. 33–44. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53254-6_2

    Chapter  Google Scholar 

  4. Strahilov, A., Hämmerle, H.: Engineering workflow and software tool chains of automated production systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 207–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_9

    Chapter  Google Scholar 

  5. Lüder, A., Schmidt, N.: Challenges of mechatronical engineering of production systems: an automation system engineering view. In: Ghezzi, L., Hömberg, D., Landry, C. (eds.) Math for the Digital Factory. MI, vol. 27, pp. 93–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63957-4_5

    Chapter  Google Scholar 

  6. Hell, K.: Methoden der projektübergreifenden Wie-derverwendung im Anlagenentwurf, Ph.D. thesis, Otto-v.-Guericke University, Magdeburg, Germany, March 2018

    Google Scholar 

  7. Lindemann, U.: Methodische Entwicklung technischer Produkte. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-37451-0

    Book  Google Scholar 

  8. Lüder, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, S.: Aggregation of engineering processes regarding the mechatronic approach. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011), Proceedings-CD, Toulouse, France, September 2011

    Google Scholar 

  9. Diedrich, Ch., Lüder, A., Hundt, L.: Bedeutung der Interoperabilität bei Entwurf und Nutzung von automatisierten Produktionssystemen. at –Automatisierungstechnik 59(7), 426–438 (2011)

    Article  Google Scholar 

  10. Wolff, D., Hundt, L., Dreher, S.: Requirements on the engineering of advanced standby strategies in automobile production. In: 11th Global Conference on Sustainable Manufacturing, Proceedings, Berlin, Germany, pp. 165–170, September 2013

    Google Scholar 

  11. Kaufmann, U., Pfenning, M.: Was die Produkt- von der Softwareentwicklung lernen kann. In: Tag des Systems Engineering 2014, Proceedings, pp. 329–337. Hanser Verlag

    Google Scholar 

  12. Fischer, S.: Agilität, Agile HR Konferenz, Köln, Deutschland, April 2016. http://hr-pioneers.com/wp-content/uploads/2016/04/Hochschule-Pforzheim.pdf

  13. Kagermann, H., Wahlster, W., Helbig, J. (eds.) Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0 – Deutschlands Zukunft als Industriestandort sichern, Forschungsunion Wirtschaft und Wissenschaft, Arbeitskreis Industrie 4.0 (2013). https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf. Accessed Apr 2018

  14. Lüder, A., Pauly, J., Rosendahl, R., Biffl, S., Rinker, F.: Support for engineering chain migration towards multi-disciplinary engineering chains. In: 14th IEEE International Conference on Automation Science and Engineering (CASE 2018), Proceedings, Munich, Germany (2018)

    Google Scholar 

  15. Winkler, D., Biffl, S., Steininger, H.: Integration von heterogenen Engineering Daten mit AutomationML und dem AML.hub: Konsistente Daten über Fachbereichs-grenzen hinweg, develop3 systems engineering, vol. 3 pp. 62–64 (2015)

    Google Scholar 

  16. Mordinyi, R., Winkler, D., Ekaputra, F.J., Wimmer, M., Biffl, S.: Investigating model slicing capabilities on integrated plant models with AutomationML. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2016), Proceedings-CD, Berlin, Germany, September 2016

    Google Scholar 

  17. Winkler, D., Wimmer, M., Berardinelli, L., Biffl, S.: Towards model quality assurance for multi-disciplinary engineering. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 433–457. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_16

    Chapter  Google Scholar 

Download references

Acknowledgement

The financial support one the one hand by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development and on the other hand by the German Federal Ministry of economic Affairs and Energy within the PAICE program are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arndt Lüder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüder, A., Pauly, JL., Kirchheim, K. (2019). Multi-disciplinary Engineering of Production Systems – Challenges for Quality of Control Software. In: Winkler, D., Biffl, S., Bergsmann, J. (eds) Software Quality: The Complexity and Challenges of Software Engineering and Software Quality in the Cloud. SWQD 2019. Lecture Notes in Business Information Processing, vol 338. Springer, Cham. https://doi.org/10.1007/978-3-030-05767-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05767-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05766-4

  • Online ISBN: 978-3-030-05767-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics