Skip to main content

How to Detect and Contain Suspicious Transactions in Distributed Ledgers

  • Conference paper
  • First Online:
Book cover Smart Blockchain (SmartBlock 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11373))

Included in the following conference series:

Abstract

Distributed Ledger Technology (DLT) like Blockchain Technology (BCT) enables the development of trust-free P2P networks, consisting of nodes that process and propagate transactions in form of messages. Trust into other nodes and/or messages is replaced by trust into the protocols that are governing the network; most notably the message signature and consensus protocols. Depending on the chosen consensus protocols, resilience towards malicious/faulty nodes and messages ranges between \( {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}\,\text{and}\,{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} - 1 \) of all nodes. However, an often overlooked aspect within the resilience/security aspects of DLT networks is that they tend to interact with other components that are often less resilient e.g. clients/wallets. This, in turn, allows attackers to issue forged transactions that are formally correct. This paper focuses on detecting and containing such transaction using metadata and event propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  Google Scholar 

  2. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)

    Google Scholar 

  3. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security and privacy: the case study of a smart home. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 618–623. IEEE (2017)

    Google Scholar 

  4. Man-in-the-middle attacks on wallets. http://news.bitcoin.com/ledger-addresses-man-in-the-middle-attack-that-threatens-millions-of-hardware-wallets/

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  6. Hernández-Ramos, J.L., Jara, A.J., Marın, L., Skarmeta, A.F.: Distributed capability-based access control for the internet of things. J. Internet Serv. Inf. Secur. (JISIS) 3(3/4), 1–16 (2013)

    Google Scholar 

  7. Chainalyis. https://www.chainalysis.com/

  8. Debreceny, R.S., Gray, G.L.: Data mining journal entries for fraud detection: an exploratory study. Int. J. Account. Inf. Syst. 11(3), 157–181 (2010)

    Article  Google Scholar 

  9. Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection. In: Proceedings of the 20th National Information Systems Security Conference, vol. 377, pp. 366–380, Baltimore, USA (1997)

    Google Scholar 

  10. Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack detection. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 80–93. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39945-3_6

    Chapter  Google Scholar 

  11. Kosba, A.E., et al.: How to use SNARKs in universally composable protocols. IACR Cryptol. ePrint Arch. 2015, 1093 (2015)

    Google Scholar 

  12. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  13. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: FairAccess: a new Blockchain-based access control framework for the Internet of Things. Security and Communication Networks 9(18), 5943–5964 (2016)

    Article  Google Scholar 

  14. Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini, M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies. Advances in Intelligent Systems and Computing, vol. 520. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46568-5_53

    Chapter  Google Scholar 

  15. Faisal, T., Courtois, N., Serguieva, A.: The evolution of embedding metadata in blockchain transactions. arXiv preprint arXiv:1806.06738 (2018)

  16. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Advances in computers, vol. 46, pp. 329–400. Elsevier (1998)

    Google Scholar 

  17. https://github.com/ethereum/wiki/wiki/White-Paper

  18. https://www.forth.com/forth/

  19. https://bitcoin.org/bitcoin.pdf

  20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 1, 41–50 (2003)

    Article  Google Scholar 

  21. Murch, R.: Autonomic Computing. IBM Press (2004)

    Google Scholar 

  22. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and applications. ACM Comput. Surv. (CSUR) 40(3), 7 (2008)

    Article  Google Scholar 

  23. Nygate, Y.A.: Event correlation using rule and object based techniques. In: Sethi, A.S., Raynaud, Y., Faure-Vincent, F. (eds.) Integrated Network Management IV. Springer, Boston (1995). https://doi.org/10.1007/978-0-387-34890-2_25

    Chapter  Google Scholar 

  24. Buchmann, A., Koldehofe, B.: Complex event processing. IT-Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik 51(5), 241–242 (2009)

    Google Scholar 

  25. Deters, R.: Case-based diagnosis of multiple faults. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 411–420. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60598-3_37

    Chapter  Google Scholar 

  26. Fadhil, M., Owen, G., Adda, M.: Bitcoin network measurements for simulation validation and parameterization. In: 11th International Network Conference, INC 2016. University of Plymouth (2016)

    Google Scholar 

  27. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

    Chapter  MATH  Google Scholar 

  28. Mahalle, P.N., Anggorojati, B., Prasad, N.R., Prasad, R.: Identity authentication and capability based access control (IACAC) for the internet of things. J. Cyber Secur. Mobil. 1(4), 309–348 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Deters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deters, R. (2018). How to Detect and Contain Suspicious Transactions in Distributed Ledgers. In: Qiu, M. (eds) Smart Blockchain. SmartBlock 2018. Lecture Notes in Computer Science(), vol 11373. Springer, Cham. https://doi.org/10.1007/978-3-030-05764-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05764-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05763-3

  • Online ISBN: 978-3-030-05764-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics