Skip to main content

Multiple SECM Mapping of Tyrosinase in Micro-contact Printed Fruit Samples on Polyvinylidene Fluoride Membrane

  • Chapter
  • First Online:
  • 242 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Tyrosinase is a copper-containing enzyme known for catalyzing the hydroxylation of monophenols and their oxidation to the respective quinones in the presence of oxygen. Furthermore, tyrosinase is directly involved in fruit ripening, in the biosynthesis of the skin pigment melanin and in skin disorders such as vitiligo (i.e. skin depigmentation due to loss of melanin). Furthermore, it is a biomarker in melanoma and its expression level is very high in some stages. Therefore, the accurate and sensitive detection of tyrosinase could provide relevant information for a better understanding of different tyrosinase-related biological processes.

Adapted with permissions from: Tzu-En Lin, Fernando Cortés-Salazar, Andreas Lesch, Liang Qiao, Alexandra Bondarenko and Hubert H. Girault, Electrochimica Acta 2015, 179, 57–64.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Jiang, X. Duan, D. Joyce, Z. Zhang, J. Li, Food Chem. 88, 443–446 (2004)

    Article  CAS  Google Scholar 

  2. V. Kahn, J. Food Sci. 50, 111–115 (2006)

    Article  Google Scholar 

  3. Y.-H. Song, E. Connor, Y. Li, B. Zorovich, P. Balducci, N. Maclaren, Lancet 344, 1049–1052 (1994)

    Article  CAS  Google Scholar 

  4. Y.-T. Chen, E. Stockert, S. Tsang, K.A. Coplan, L.J. Old, Immunology 92, 8125–8129 (1995)

    CAS  Google Scholar 

  5. B.E.G. Rothberg, M.B. Bracken, D.L. Rimm, J. Natl. Cancer Inst. 101, 452–474 (2009)

    Article  CAS  Google Scholar 

  6. G.F.L. Hofbauer, J. Kamarashev, R. Geertsen, R. Böni, R. Dummer, J. Cutan. Pathol. 25, 204–209 (1998)

    Article  CAS  Google Scholar 

  7. M. Mossberg, S. Vernick, R. Ortenberg, G. Markel, Y. Shacham-Diamand, J. Rishpon, Electroanalysis 26, 1671–1675 (2014)

    Article  CAS  Google Scholar 

  8. M. Urosevic, B. Braun, J. Willers, G. Burg, R. Dummer, Exp. Dermatol. 14, 491–497 (2005)

    Article  CAS  Google Scholar 

  9. G.E. Orchard, Histochem. J. 32, 475–481 (2000)

    Article  CAS  Google Scholar 

  10. X. Feng, F. Feng, M. Yu, F. He, Q. Xu, H. Tang, S. Wang, Y. Li, D. Zhu, Org. Lett. 10, 5369–5372 (2008)

    Article  CAS  Google Scholar 

  11. Q. Xu, J. Yoon, Chem. Commun. 47, 12497–12499 (2011)

    Article  CAS  Google Scholar 

  12. C. Védrine, S. Fabiano, C. Tran-Minh, Talanta 59, 535–544 (2003)

    Article  Google Scholar 

  13. P. Önnerfjord, J. Emnéus, G. Marko-Varga, L. Gorton, F. Ortega, E. Domínguez, Biosens. Bioelectron. 10, 607–619 (1995)

    Article  Google Scholar 

  14. B. Serra, M. DoloresMorales, J. Zhang, A.J. Reviejo, E.H. Hall, J.M. Pingarron, Anal. Chem. 77, 8115–8121 (2005)

    Article  CAS  Google Scholar 

  15. S. Cosnier, S. Szunerits, R.S. Marks, J.P. Lellouche, K. Perie, J. Biochem. Biophys. Methods 50, 65–77 (2001)

    Article  CAS  Google Scholar 

  16. H.J. Issaq, Electrophoresis 22, 3629–3638 (2001)

    Article  CAS  Google Scholar 

  17. K. Berggren, T.H. Steinberg, W.M. Lauber, J.A. Carroll, M.F. Lopez, E. Chernokalskaya, L. Zieske, Z. Diwu, R.P. Haugland, W.F. Patton, Anal. Biochem. 276, 129–143 (1999)

    Article  CAS  Google Scholar 

  18. T. Rabilloud, L. Vuillard, C. Gilly, J. J. Lawrence (2009)

    Google Scholar 

  19. V. Neuhoff, N. Arold, D. Taube, W. Ehrhardt, Electrophoresis 9, 255–262 (1988)

    Article  CAS  Google Scholar 

  20. M. Zhang, H.H. Girault, Analyst 134, 25–30 (2009)

    Article  CAS  Google Scholar 

  21. M. Zhang, A. Becue, M. Prudent, C. Champod, H.H. Girault, Chem. Commun. 3948 (2007)

    Google Scholar 

  22. G. Wittstock, K.-J. Yu, H.B. Halsall, T.H. Ridgway, W.R. Heineman, Anal. Chem. 67, 3578–3582 (1995)

    Article  CAS  Google Scholar 

  23. A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, B. Mizaikoff, Angew. Chem. Int. Ed. 42, 3238–3240 (2003)

    Article  CAS  Google Scholar 

  24. D.T. Pierce, P.R. Unwin, A.J. Bard, Anal. Chem. 64, 1795–1804 (1992)

    Article  CAS  Google Scholar 

  25. S. Kasai, A. Yokota, H. Zhou, M. Nishizawa, K. Niwa, T. Onouchi, T. Matsue, Anal. Chem. 72, 5761–5765 (2000)

    Article  CAS  Google Scholar 

  26. G. Sciutto, S. Prati, R. Mazzeo, M. Zangheri, A. Roda, L. Bardini, G. Valenti, S. Rapino, M. Marcaccio, Anal. Chim. Acta 831, 31–37 (2014)

    Article  CAS  Google Scholar 

  27. D. Rudolph, D. Bates, T.J. DiChristina, B. Mizaikoff, C. Kranz, Electroanalysis 28, 2459–2465 (2016)

    Article  CAS  Google Scholar 

  28. H. Shiku, T. Matsue, I. Uchida, Anal. Chem. 68, 1276–1278 (1996)

    Article  CAS  Google Scholar 

  29. J.-M. Noel, A. Latus, C. Lagrost, E. Volanschi, P. Hapiot, J. Am. Chem. Soc. 134, 2835–2841 (2012)

    Article  CAS  Google Scholar 

  30. B.D. Bath, R.D. Lee, H.S. White, E.R. Scott, Anal. Chem. 70, 1047–1058 (1998)

    Article  CAS  Google Scholar 

  31. M. Gonsalves, A.L. Barker, J.V. Macpherson, P.R. Unwin, D. O’Hare, C.P. Winlove, Biophys. J. 78, 1578–1588 (2000)

    Article  CAS  Google Scholar 

  32. C.M. Sánchez-Sánchez, A.J. Bard, Anal. Chem. 81, 8094–8100 (2009)

    Article  Google Scholar 

  33. L. Ma, H. Zhou, S. Xin, C. Xiao, F. Li, S. Ding, Electrochim. Acta 178, 767–777 (2015)

    Article  CAS  Google Scholar 

  34. M. Nebel, S. Grützke, N. Diab, A. Schulte, W. Schuhmann, Angew. Chem. Int. Ed. 52, 6335–6338 (2013)

    Article  CAS  Google Scholar 

  35. K.B. Holt, A.J. Bard, Biochemistry 44, 13214–13223 (2005)

    Article  CAS  Google Scholar 

  36. T. Kaya, Y.S. Torisawa, D. Oyamatsu, M. Nishizawa, T. Matsue, Biosens. Bioelectron. 18, 1379–1383 (2003)

    Article  CAS  Google Scholar 

  37. N. Géza, N. Lívia, Trends in Bioelectroanalysis (Springer, Cham, 2017), pp. 281–339

    Google Scholar 

  38. T.-E. Lin, F. Cortés-Salazar, A. Lesch, L. Qiao, A. Bondarenko, H.H. Girault, Electrochim. Acta 179, 57–64 (2015)

    Article  CAS  Google Scholar 

  39. T.C. Rohner, J.S. Rossier, H.H. Girault, Electrochem. Commun. 4, 695–700 (2002)

    Article  CAS  Google Scholar 

  40. F. Cortés-Salazar, J.-M. Busnel, F. Li, H.H. Girault, J. Electroanal. Chem. 635, 69–74 (2009)

    Article  Google Scholar 

  41. M. Zhang, G. Wittstock, Y. Shao, H.H. Girault, Anal. Chem. 79, 4833–4839 (2007)

    Article  CAS  Google Scholar 

  42. B.K. Sørensen, P. Højrup, E. Østergård, C.S. Jørgensen, J. Enghild, L.R. Ryder, G. Houen, Anal. Biochem. 304, 33–41 (2002)

    Article  Google Scholar 

  43. J. Ji, F. Liu, N.A. Hashim, M.R.M. Abed, K. Li, React. Funct. Polym. 86, 134–153 (2015)

    Article  CAS  Google Scholar 

  44. S.Y. Seo, V.K. Sharma, N. Sharma, J. Agric. Food Chem. 51, 2837–2853 (2003)

    Article  CAS  Google Scholar 

  45. A. Dobrzeniecka, A. Zeradjanin, J. Masa, J. Stroka, M. Goral, W. Schuhmann, P.J. Kulesza, ECS Trans. 35, 33–44 (2011). (The Electrochemical Society)

    Article  CAS  Google Scholar 

  46. S. Gidanian, P.J. Farmer, J. Inorg. Biochem. 89, 54–60 (2002)

    Article  CAS  Google Scholar 

  47. G. Volpe, R. Draisci, G. Palleschi, D. Compagnone, Analyst 123, 1303–1307 (1998)

    Article  CAS  Google Scholar 

  48. M. Jović, Y. Zhu, A. Lesch, A. Bondarenko, F. Cortés-Salazar, F. Gumy, H.H. Girault, J. Electroanal. Chem. 786, 69–76 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-En Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, TE. (2019). Multiple SECM Mapping of Tyrosinase in Micro-contact Printed Fruit Samples on Polyvinylidene Fluoride Membrane. In: Soft Probes for Bio-electrochemical Imaging. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-05758-9_3

Download citation

Publish with us

Policies and ethics