A Comparison Between ZnO Hexagonal Micro/Nanoprisms Deposited on Aluminum and Glass Substrates

  • Shadia J. IkhmayiesEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Zinc oxide (ZnO) micro/nanoprisms were produced as thin films by the spray pyrolysis method on glass and aluminum substrates from the same precursor solution using zinc chloride (ZnCl2) as the raw material. A comparison between morphology, structure, composition, and size of both sets of prisms was performed. X-ray diffractograms showed that in both cases the preferential orientation is [002], but there is more randomness in the case of glass substrates. SEM images showed that the prisms on aluminum substrates have larger diameters, while prisms on glass substrates appear thinner, longer, and sometimes appear in clusters. EDS reports showed that both sets of prisms contain Zn, O, and Cl. Size analysis of the prisms was performed using imageJ software. These results are important and extremely useful in many fields such as optoelectronics, solar cells, and gas sensors.


ZnO Solar cells Transparent conducting oxides Hexagonal prisms 


  1. 1.
    Muchuweni E, Sathiaraj TS, Nyakotyo H (2017) Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3:e00285. Scholar
  2. 2.
    Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098CrossRefGoogle Scholar
  3. 3.
    Wang ZL (2008) Splendid one-dimensional nanostructures of Zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2(10):1987–1992CrossRefGoogle Scholar
  4. 4.
    Akhavan O, Mehrabian M, Mirabbaszadeh K, Azimirad R (2009) Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J Phys D Appl Phys 42:225305CrossRefGoogle Scholar
  5. 5.
    Hassan JJ, Mahdi MA, Ramizy A, Abu Hassan H, Hassan Z (2013) Fabrication and characterization of ZnO nanorods/p-6H–SiC heterojunction LED by microwave-assisted chemical bath deposition. Superlattices Microstruct 53:31–38CrossRefGoogle Scholar
  6. 6.
    Jang E-S (2017) Recent progress in synthesis of plate-like ZnO and its applications: a review. J Korean Ceram Soc 54(3):167–183CrossRefGoogle Scholar
  7. 7.
    Konenkamp R, Word RC, Schlegel C (2004) Vertical nanowire light-emitting diode. Appl Phys Lett 85(24):6004–6006CrossRefGoogle Scholar
  8. 8.
    Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252CrossRefGoogle Scholar
  9. 9.
    Wang XD, Song JH, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–105CrossRefGoogle Scholar
  10. 10.
    Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRefGoogle Scholar
  11. 11.
    Kim JS, Park WI, Lee CH, Yi GC (2006) ZnO nanorod biosensor for highly sensitive detection of specific protein binding. J Korean Phys Soc 49(4):1635–1639Google Scholar
  12. 12.
    Masuda Y, Kato K (2009) Aqueous synthesis of ZnO rod arrays for molecular sensor. Cryst Growth Des 9(7):3083–3088CrossRefGoogle Scholar
  13. 13.
    Liu YL, Liu YC, Zhang JY, Lu YM, Shen DZ, Fan XW (2006) ZnO hexagonal prisms grown onto p-Si (1 1 1) substrate from poly (vinylpyrrolidone) assisted electrochemical assembly. J Cryst Growth 290(2):405–409CrossRefGoogle Scholar
  14. 14.
    Kawasaki M, Ohtomo A, Ohkubo I, Koinuma H, Tang ZK, Yu P, Wong GKL, Zhang BP, Segawa Y (1998) Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrytal thin films. Mater Sci Eng B 56(2–3):239–245CrossRefGoogle Scholar
  15. 15.
    Hamada T, Fujii E, Chu D, Kato K, Masuda (2011) Aqueous synthesis of single-crystalline ZnO prisms on graphite substrates. J Cryst Growth 314:180–184CrossRefGoogle Scholar
  16. 16.
    Huang XH, Wu JB, Lin Y, Guo RQ (2012) ZnO microrod arrays grown on copper substrates as anode materials for lithium ion batteries. Int J Electrochem Sci 7:6611–6621Google Scholar
  17. 17.
    Choi WS, Kim EJ, Seong SG, Kim YS, Park C, Hahn SH (2009) Optical and structural properties of ZnO/TiO2/ZnO multi-layers prepared via electron beam evaporation. Vacuum 83:878–882CrossRefGoogle Scholar
  18. 18.
    Nunes P, Costa D, Fortunato E, Martins R (2002) Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering. Vacuum 64:293–297CrossRefGoogle Scholar
  19. 19.
    Caglar M, Ilican S, Caglar Y, Yakuphanoglu F (2009) Electrical conductivity and optical properties of ZnO nano structured thin film. Appl Surf Sci 255:4491–4496CrossRefGoogle Scholar
  20. 20.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  21. 21.
    Hossain MF, Zhang ZH, Takahashi T (2010) Novel micro-ring structured ZnO photoelectrode for dye-sensitized solar cell. Nano-Micro Lett 2:53–55CrossRefGoogle Scholar
  22. 22.
    Ikhmayies SJ (2016) Synthesis of ZnO microrods by the spray pyrolysis technique. J Electron Mater 45(8):3964–3969CrossRefGoogle Scholar
  23. 23.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2010) Electrical and optical properties of ZnO:Al thin films prepared by the spray pyrolysis technique. Phys Scr 81: 015703 (5 pp)CrossRefGoogle Scholar
  24. 24.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2010) Characterization of undoped spray-deposited ZnO thin films of photovoltaic applications. FDMP 6(2):165–177Google Scholar
  25. 25.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2015) A comparison between different ohmic contacts for ZnO thin films. J Semicond 36(3):033005(5 pp)CrossRefGoogle Scholar
  26. 26.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2010) The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray-deposited ZnO thin films. FDMP 6(2):219–232Google Scholar
  27. 27.
    Ikhmayies SJ, Zbib MB (2018) Synthesis of ZnO hexagonal prisms on aluminum substrates by the spray pyrolysis technique. In: Sayigh A (ed) Transition towards 100% renewable energy, innovative renewable energy. Springer International Publishing, pp 177–186Google Scholar
  28. 28.
    Ikhmayies SJ (2018) ZnO thin films of flowered-fibrous micro/nanowebs on glass substrates using the spray pyrolysis method. In: Li B, Li J, Ikhmayies S, Zhang M, Kalay YE, Carpenter JS, Hwang J-Y, Monteiro SN, Firrao D, Brown A, Bai C, Peng Z, Escobedo-Diaz JP, Goswami R, Kim J (eds) Characterization of minerals, metals, and materials 2018, pp 209–215Google Scholar
  29. 29.
    Lahlouh BI, Ikhmayies SJ, Juwhari KH (2018) Structural, optical, and vibrational properties of ZnO microrods deposited on silicon substrate. J Electron Mater 47(8):4455–4462CrossRefGoogle Scholar
  30. 30.
    Ikhmayies SJ, Zbib MB (2017) Spray pyrolysis synthesis of ZnO micro/nano rods on glass substrates. J Electron Mater 46(10):5629–5634CrossRefGoogle Scholar
  31. 31.
    Ikhmayies SJ (2017) Formation of three dimensional ZnO micro flowers from self assembled ZnO micro discs. Metall Mater Trans A 48(8):3625–3629CrossRefGoogle Scholar
  32. 32.
    Ikhmayies SJ, Zbib MB (2017) Synthesis of ZnO hexagonal micro discs on glass substrates using the spray pyrolysis technique. J Electron Mater 46(7):3982–3986CrossRefGoogle Scholar
  33. 33.
    Juwhari KH, Ikhmayies SJ, Lahlouh BI (2017) Room temperature photoluminescence of spray-deposited ZnO thin films on glass substrates. Int J Hydrogen Energ 42(28):17741–17747CrossRefGoogle Scholar
  34. 34.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  35. 35.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The imageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529CrossRefGoogle Scholar
  36. 36.
    Kobayashi A, Shirakura Y, Miyamura K, Ohta J, Fujioka H (2007) Structural properties of GaN grown on Zn-face ZnO at room temperature. J Cryst Growth 305(1):70–73CrossRefGoogle Scholar
  37. 37.
    Oh S, Nagata T, Volk J, Wakayama Y (2012) Nanoimprint for fabrication of highly ordered epitaxial ZnO nanorods on transparent conductive oxide films. Appl Phys Express 5:095003CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Science, Physics DepartmentIsra UniversityAmmanJordan

Personalised recommendations