In Situ Characterization at High Temperature of VDM Alloy 780 Premium to Determine Solvus Temperatures and Phase Transformations Using Neutron Diffraction and Small-Angle Neutron Scattering

  • C. SolísEmail author
  • J. Munke
  • M. Hofmann
  • S. Mühlbauer
  • M. Bergner
  • B. Gehrmann
  • J. Rösler
  • R. Gilles
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


New Ni-based superalloy VDM 780 Premium has been developed for higher service temperatures than the alloy 718. This paper describes the properties of this alloy by means of in situ neutron diffraction (ND) and in situ small-angle neutron scattering (SANS) measurements supported by scanning electron microscopy (SEM) images. ND experiments show the phases present in the alloy and their evolution with temperature, which allow us to derive their respective solvus temperatures and the misfit between the hardening phase and the matrix and its change with temperature.


Ni-based superalloy High-temperature alloy In situ neutron diffraction In situ small-angle neutron scattering 



Financial support of this work via the BMBF Project 05K16WO2 is kindly acknowledged.


  1. 1.
    Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22(2):361–374CrossRefGoogle Scholar
  2. 2.
    Furrer D, Fecht H (1999) Ni-based superalloys for turbine discs. J Miner Metall Mater Soc 51(1):14–17CrossRefGoogle Scholar
  3. 3.
    Wagner JN, Hofmann M, Van Petegem S, Krempaszky C, Hoelzel M, Stockinger M (2016) Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys. Mat Sci Eng A Struct 662:303–307CrossRefGoogle Scholar
  4. 4.
    Mukherji D, Del Genovese D, Strunz P, Gilles R, Wiedenmann A, Rösler J (2008) Microstructural characterisation of a Ni-Fe-based superalloy by in situ small-angle neutron scattering measurements. J Phys Condens Matter 20(10):104220Google Scholar
  5. 5.
    Gilles R, Mukherji D, Eckerlebe H, Karge L, Staron P, Strunz P, Lippmann T (2014) Investigations of early stage precipitation in a tungsten-rich nickel-base superalloy using SAXS and SANS. J Alloys Compd 612:90–97CrossRefGoogle Scholar
  6. 6.
    Slama C, Abdellaoui M (2000) Structural characterization of the aged Inconel 718. J Alloy Compd 306(1–2):277–284CrossRefGoogle Scholar
  7. 7.
    Del Genovese D, Strunz P, Mukherji D, Gilles R, Rösler J (2005) Microstructural characterization of a modified 706-type Ni-Fe superalloy by small-angle neutron scattering and electron microscopy. Metall Mater Trans A 36A(12):3439–3450CrossRefGoogle Scholar
  8. 8.
    Fisk M, Andersson J, du Rietz R, Haas S, Hall S (2014) Precipitate evolution in the early stages of ageing in Inconel 718 investigated using small-angle X-ray scattering. Mat Sci Eng A Struct 612:202–207CrossRefGoogle Scholar
  9. 9.
    Antonov S, Detrois M, Helmink RC, Tin S (2015) Precipitate phase stability and compositional dependence on alloying additions in gamma-gamma′-delta-eta Ni-base superalloys. J Alloys Compd 626:76–86CrossRefGoogle Scholar
  10. 10.
    Fedorova T, Rösler J, Kloewer J, Gehrmann B(2014) Development of a new 718-type Ni-Co superalloy family for high temperature applications at 750 °C. Paper presented at the 2nd European symposium on superalloys and their applications, Giens, France, 12–16 May 2014. In: MATEC Web Conference, vol 14, p 01003CrossRefGoogle Scholar
  11. 11.
    Sommitsch C, Huber D, Ingelman-Sudberg F, Mitsche S, Stockinger M, Buchmayr B (2009) Recrystallization and grain growth in the nickel-based superalloy Allvac 718Plus. Int J Mat Res 100(8):1088–1098CrossRefGoogle Scholar
  12. 12.
    Fedorova T, Rösler J, Gehrmann B, Kloewer J (2014) Invention of a new 718-type Ni-Co superalloy family for high temperature applications at 750 °C. Paper presented at the 8th international symposium on superalloy 718 and derivates, Pittsburgh, PA, 28 Sep–01 Oct, TMS 2014, pp 587–599Google Scholar
  13. 13.
    Solís C, Munke J, Bergner M, Kriele A, Mühlbauer MJ, Cheptiakov DV, Gehrmann B, Rösler J, Gilles R (2018) In-situ characterization at elevated temperatures of a new Ni-based superalloy VDM-780 Premium. Metall Mater Trans A 49:4373–4381CrossRefGoogle Scholar
  14. 14.
    Diologent F, Caron P, d’Almeida T, Chambreland S, Jacques A, Bastie P (2006) Temperature dependence of lattice mismatch and gamma′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy. Int J Mat Res 97(8):1136–1142CrossRefGoogle Scholar
  15. 15.
    Heinemann A, Mühlbauer S (2015) SANS-1: small angle neutron scattering. J Large Scale Res Facil 1:A10CrossRefGoogle Scholar
  16. 16.
    Mühlbauer S, Heinemann A, Wilhelm A, Karge L, Ostermann A, Defendi I, Schreyer A, Petry W, Gilles R (2016) The new small-angle neutron scattering instrument SANS-1 at MLZ-characterization and first results. Nucl Instrum Meth A 832:297–305CrossRefGoogle Scholar
  17. 17.
    Keiderling U (2002) The new ‘BerSANS-PC’ software for reduction and treatment of small angle neutron scattering data. Appl Phys A Mater Sci Process 74:S1455–S1457CrossRefGoogle Scholar
  18. 18.
    Strunz P, Saroun J, Keiderling U, Wiedenmann A, Przenioslo R (2000) General formula for determination of cross-section from measured SANS intensities. J Appl Crystallogr 33(1):829–833CrossRefGoogle Scholar
  19. 19.
    Kohlbrecher J (2012) SASfit: a program for fitting simple structural models to small angle scattering dataGoogle Scholar
  20. 20.
    Hofmann M, Seidl GA, Rebelo-Kornmeier J, Garbe U, Schneider R, Wimpory RC, Wasmuth U, Noster U (2006) Paper presented at the 7th European conference on residual stresses (ECRS 7), Berlin, 13–15 Sep 2006. Mater Sci Forum. Trans Tech Publ 524–525:211–216Google Scholar
  21. 21.
    Strunz P, Petrenec M, Davydov V, Polák J, Beran P (2013) Misfit in inconel-type superalloy. Adv Mater Sci Eng 408347Google Scholar
  22. 22.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192(1–2):55–56CrossRefGoogle Scholar
  24. 24.
    Pickering EJ, Mathur H, Bhowmik A, Messé OMDM, Barnard JS, Hardy MC, Krakow R, Loehnert K, Stone HJ, Rae CMF (2012) Grain-boundary precipitation in Allvac 718Plus. Acta Mater 60(6–7):2757–2769CrossRefGoogle Scholar
  25. 25.
    Krakow R, Johnstone DN, Eggeman AS, Hünert D, Hardy MC, Rae CMF, Midgley PA (2017) On the crystallography and compositionGoogle Scholar
  26. 26.
    Messé OM, Barnard JS, Pickering EJ, Midgley PA, Rae CMF (2014) On the precipitation of delta phase in ALLVAC® 718Plus. Phil Mag 94(10):1132–1152CrossRefGoogle Scholar
  27. 27.
    Hidnert P (1957) Thermal expansion of some nickel alloys. J Res Natl Bur Stand 58(2):89–92CrossRefGoogle Scholar
  28. 28.
    Kamara AB, Ardell AJ, Wagner CNJ (1996) Lattice misfits in four binary Ni-base gamma/gamma′ alloys at ambient and elevated temperatures. Metall Mater Trans A 27(10):2888–2896CrossRefGoogle Scholar
  29. 29.
    Caron P (2000) High gamma′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Paper presented at the 9th international symposium on superalloys, Champion, PA, 17–21 Sep 2000, pp 737–746Google Scholar
  30. 30.
    Wang T, Chen LQ, Liu ZK (2007) Lattice parameters and local lattice distortions in fcc-Ni solutions. Metall Mater Trans A 38A(3):562–569CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. Solís
    • 1
    Email author
  • J. Munke
    • 1
  • M. Hofmann
    • 1
  • S. Mühlbauer
    • 1
  • M. Bergner
    • 2
  • B. Gehrmann
    • 3
  • J. Rösler
    • 2
  • R. Gilles
    • 1
  1. 1.Heinz Maier-Leibnitz Zentrum (MLZ)TU MünchenGarchingGermany
  2. 2.Institut für Werkstoffe (ifW), Technische Universität BraunschweigBraunschweigGermany
  3. 3.VDM Metals International GmbHAltenaGermany

Personalised recommendations