Friction Stir Welding of Aluminum Alloys and Steels: Issues and Solutions

  • Mian Wasif SafeenEmail author
  • Pasquale Russo Spena
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Welding of aluminum alloys and steels by conventional fusion welding technology is difficult because of their different mechanical, chemical, and physical properties. Alternatively, friction stir welding (FSW) could be a solution as materials are joined in a solid state. However, FSW has some issues and drawbacks. The possible formation of brittle Al–Fe intermetallic compounds deteriorates mechanical joint strength. Improper process parameters, such as rotational and welding speed, could generate insufficient and/or inadequate materials intermixing. Therefore, defects like incomplete penetration, tunnel, surface grooves, surface galling, and kissing bond can form. Tool geometry (e.g. tool pin profile and shoulder) drives the uniformity of heat input and intermixing pattern inside weld joint. Tool wear is not capable of producing a homogenous heat and an adequate intermixing, thus voids and/or flashes can occur. To overcome the above-mentioned issues, a proper selection of process parameters, tool geometry and materials should be employed to ensure an adequate heat input and intermixing to join successfully aluminum and steel sheets. This article is a short review about the main issues related to FSW of aluminum and steels sheets and possible solutions.


Friction stir welding Dissimilar joining Aluminum alloy Steel Defect 


  1. 1.
    Yaemphuan P, Triwanapong S, Kimapong K (2018) Shear strength and fracture location of dissimilar A6063 aluminum alloy and SUS430 stainless steel lap joint. Key Eng Mater. (Trans Tech Publication)Google Scholar
  2. 2.
    Zandsalimi S, Heidarzadeh A, Saeid T (2018) Dissimilar friction-stir welding of 430 stainless steel and 6061 aluminum alloy: microstructure and mechanical properties of the joints. Proc Inst Mech Eng Part L J Mater Des Appl, 1464420718789447Google Scholar
  3. 3.
    Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater Des 59:50–62CrossRefGoogle Scholar
  4. 4.
    Ramachandran K, Murugan N, Kumar SS (2015) Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater Sci Eng A 639:219–233CrossRefGoogle Scholar
  5. 5.
    Dehghani M, Mousavi SA, Amadeh A (2013) Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld. Trans Nonferrous Metals Soc China 23(7):1957–1965CrossRefGoogle Scholar
  6. 6.
    Jiang W, Kovacevic R (2004) Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proc Inst Mech Eng Part B J Eng Manuf 218(10):1323–1331CrossRefGoogle Scholar
  7. 7.
    Picot F et al (2018) A correlation between the ultimate shear stress and the thickness affected by intermetallic compounds in friction stir welding of dissimilar aluminum alloy-stainless steel joints. Metals 8(3):179CrossRefGoogle Scholar
  8. 8.
    Nishida H et al (2017) Fracture toughness and fatigue crack behaviour of A3003/SUS304 lap friction stir welded joints. Weld Int 31(4):268–277CrossRefGoogle Scholar
  9. 9.
    Ramachandran K, Murugan N, Kumar SS (2015) Influence of tool traverse speed on the characteristics of dissimilar friction stir welded aluminium alloy, AA5052 and HSLA steel joints. Arch Civ Mech Eng 15(4):822–830CrossRefGoogle Scholar
  10. 10.
    Tanaka T, Morishige T, Hirata T (2009) Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Mater 61(7):756–759CrossRefGoogle Scholar
  11. 11.
    Kimapong K, Watanabe T (2005) Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel. Mater Trans 46(10):2211–2217CrossRefGoogle Scholar
  12. 12.
    Haghshenas M et al (2014) Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels. Mater Des 55:442–449CrossRefGoogle Scholar
  13. 13.
    Dehghani M, Amadeh A, Mousavi SA (2013) Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater Des 49:433–441CrossRefGoogle Scholar
  14. 14.
    Kundu S et al (2013) Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium. Mater Des 50:370–375CrossRefGoogle Scholar
  15. 15.
    Watanabe T, Takayama H, Yanagisawa A (2006) Joining of aluminum alloy to steel by friction stir welding. J Mater Process Technol 178(1–3):342–349CrossRefGoogle Scholar
  16. 16.
    Toumpis A et al (2014) Development of a process envelope for friction stir welding of DH36 steel—a step change. Mater Des (1980–2015) 62:64–75CrossRefGoogle Scholar
  17. 17.
    Rafiei R et al (2017) Microstructural characteristics and mechanical properties of the dissimilar friction-stir butt welds between an Al–Mg alloy and A316L stainless steel. Int J Adv Manuf Technol 90(9–12):2785–2801CrossRefGoogle Scholar
  18. 18.
    Palanivel R et al (2012) Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater Des 40:7–16CrossRefGoogle Scholar
  19. 19.
    Tanaka T et al (2015) Analysis of material flow in the sheet forming of friction-stir welds on alloys of mild steel and aluminum. J Mater Process Technol 226:115–124CrossRefGoogle Scholar
  20. 20.
    Zhou C, Yang X, Luan G (2006) Effect of oxide array on the fatigue property of friction stir welds. Scripta Mater 54(8):1515–1520CrossRefGoogle Scholar
  21. 21.
    Mehta KP, Badheka VJ (2016) Effects of tool pin design on formation of defects in dissimilar friction stir welding. Procedia Technol 23:513–518CrossRefGoogle Scholar
  22. 22.
    Safeen W et al (2016) Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6 using response surface methodology. Int J Adv Manuf Technol 87(5–8):1765–1781CrossRefGoogle Scholar
  23. 23.
    Scialpi A, De Filippis L, Cavaliere P (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Des 28(4):1124–1129CrossRefGoogle Scholar
  24. 24.
    Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des 29(2):362–373CrossRefGoogle Scholar
  25. 25.
    Nasresfahani A et al (2017) Effects of tool wear on friction stir welded joints of Ti–6Al–4V alloy. Mater Sci Technol 33(5):583–591CrossRefGoogle Scholar
  26. 26.
    Liu H et al (2005) Wear characteristics of a WC–Co tool in friction stir welding of AC4A+ 30 vol% SiCp composite. Int J Mach Tools Manuf 45(14):1635–1639CrossRefGoogle Scholar
  27. 27.
    Chen Y, Liu H, Feng J (2006) Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Mater Sci Eng A 420(1–2):21–25CrossRefGoogle Scholar
  28. 28.
    Liu H et al (2003) Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Process Technol 142(3):692–696CrossRefGoogle Scholar
  29. 29.
    Zhao Y-H et al (2005) The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Mater Lett 59(23):2948–2952CrossRefGoogle Scholar
  30. 30.
    Wan L, Huang Y (2017) Microstructure and mechanical properties of Al/Steel friction stir lap weld. Metals 7(12):542CrossRefGoogle Scholar
  31. 31.
    Hassan AM et al (2012) Effect of processing parameters on friction stir welded aluminum matrix composites wear behavior. Mater Manuf Process 27(12):1419–1423CrossRefGoogle Scholar
  32. 32.
    Fraser K et al (2018) Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach. Metals 8(2):101CrossRefGoogle Scholar
  33. 33.
    Ratanathavorn W, Melander A (2017) Influence of zinc on intermetallic compounds formed in friction stir welding of AA5754 aluminium alloy to galvanised ultra-high strength steel. Sci Technol Weld Join 22(8):673–680CrossRefGoogle Scholar
  34. 34.
    Lakshminarayanan A, Ramachandran C, Balasubramanian V (2014) Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel. Def Technol 10(4):360–370CrossRefGoogle Scholar
  35. 35.
    Coelho R et al (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183CrossRefGoogle Scholar
  36. 36.
    Ogura T et al (2012) Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint. Scripta Mater 66(8):531–534CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations