Advertisement

Non-equilibrium: Kinetic Equations

  • Werner Ebeling
  • Thorsten Pöschel
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 953)

Abstract

The pioneers of the theory of classical kinetic equations are Rudolf Clausius (1822–1888), James Clerk Maxwell (1831–1879) and Ludwig Boltzmann (1844–1906). Their theories are based on the classical dynamics of particles in the phase space according to Liouville and on detailled studies of the classical mechanics of collisions between neutral molecules.

References

  1. Balescu, R. 1963. Statistical Mechanics of Charged Particles. London: Wiley.zbMATHGoogle Scholar
  2. Binder, K., ed. 1979. Monte Carlo Methods in Statistical Physics. Berlin: Springer.Google Scholar
  3. Bogolyubov, N.N. 1991. Selected Works. Vol. II. Quantum and Classical Statistical Mechanics. New York: Gordon and Breach.Google Scholar
  4. Bogolyubov, N.N. 2005–2009. Collected Papers. Vol. 1–12. Moscow: Fizmatlit.Google Scholar
  5. Bogolyubov, N.N., and N.N. Bogolyubov, Jr. 1991. Introduction to Quantum Statistical Mechanics. New York: Gordon and Breach.zbMATHGoogle Scholar
  6. Bonitz, M. 1998. Quantum Kinetic Theory. Stuttgart: B. G. Teubner.zbMATHGoogle Scholar
  7. Bonitz, M., and W.D. Kraeft, eds. 2005. Kinetic Theory of Nonideal Plasmas. Vol. 11. Berlin: Springer.Google Scholar
  8. Bonitz, M., and D. Semkat, eds. 2006. Introduction to Computational Methods for Many Body Systems. Princeton: Rinton Press.zbMATHGoogle Scholar
  9. Bonzel, H.P., A.M. Bradshaw, and G. Ertl, eds. 1989. Physics and Chemistry of Alkali Metal Adsorption. Vol. 57. Materials Science Monographs. Amsterdam: Elsevier.Google Scholar
  10. Böttger, H.B., and V.V. Bryksin. 1985. Hopping Conduction in Solids. Berlin: Akademie-Verlag.Google Scholar
  11. Brey, J.J., I. Goldhirsch, and T. Pöschel, eds. 2009. Granular Gases: Beyond the Dilute Limit. Vol. 179. European Physical Journal Special Topics. Berlin: Springer.Google Scholar
  12. Brush, S.G., H.L. Sahlin, and E. Teller. 1966. Monte Carlo Study of a One-Component Plasma I. The Journal of Chemical Physics 45: 2102–2117.ADSCrossRefGoogle Scholar
  13. Callen, H.B., and T.A. Welton. 1951. Irreversibility and Generalized Noise. Physical Review 83: 34–40.ADSMathSciNetCrossRefGoogle Scholar
  14. Chetverikov, A.P., W. Ebeling, and M.G. Velarde. 2009. Local Electron Distributions and Diffusion in Anharmonic Lattices Mediated by Thermally Excited Solitons. The European Physical Journal B 70: 217–227.ADSCrossRefGoogle Scholar
  15. Chetverikov, A.P., W. Ebeling, G. Röpke, and M.G. Velarde. 2011. Hopping Transport and Stochastic Dynamics of Electrons in Plasma Layers. Contributions to Plasma Physics 51: 814–829.ADSCrossRefGoogle Scholar
  16. Chetverikov, A.P., W. Ebeling, and M.G. Velarde. 2011. Soliton-Like Excitations and Solectrons in Two-Dimensional Nonlinear Lattice. The European Physical Journal B 80: 137–145.ADSCrossRefGoogle Scholar
  17. Chetverikov, A.P., W. Ebeling, and M.G. Velarde. 2012. Controlling Fast Electron Transfer at the Nano-Scale by Solitonic Excitations Along Crystallographic Axes. The European Physical Journal B 85: 291.ADSCrossRefGoogle Scholar
  18. Dittrich, T., P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwerger. 1998. Quantum Transport and Dissipation. Weinheim: Wiley-VCH.zbMATHGoogle Scholar
  19. Ebeling, W., and I. Sokolov. 2005. Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems. Singapore: World Scientific.CrossRefGoogle Scholar
  20. Ebeling, W., V.E. Fortov, Yu. L. Klimontovich, N.P. Kovalenko, W.D. Kraeft, et al., eds. 1984. Transport Properties of Dense Plasmas. Boston: Birkhäuser.Google Scholar
  21. Ebeling, W., A. Förster, V.F. Fortov, V.K. Gryaznov, and A. Ya. Polishchuk. 1991. Thermophysical Properties of Hot Dense Plasmas. Stuttgart: Teubner-Verlag.Google Scholar
  22. Ebeling, W., V.E. Fortov, and V.S. Filinov. 2017. Quantum Statistics of Dense Gases and Nonideal Plasmas. Springer Series in Plasma Science and Technology. Berlin: Springer.zbMATHGoogle Scholar
  23. Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17: 549–560.ADSCrossRefGoogle Scholar
  24. Einstein, A. 1906. Zur Theorie der Lichterzeugung und Lichtabsorption. Annalen der Physik 20: 199–206.ADSMathSciNetCrossRefGoogle Scholar
  25. Einstein, A. 1916. Strahlungs-Emission und -Absorption nach der Quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft 18: 318–323.ADSGoogle Scholar
  26. Einstein, A. 1917a. Quantentheorie der Strahlung. Mitteilungen der Physikalischen Gesellschaft Zürich16: 47–62.Google Scholar
  27. Einstein, A. 1917b. Zur Quantentheorie der Strahlung. Physikalishce Zeitschrift 18: 121–128.ADSGoogle Scholar
  28. Fokker, A.D. 1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen der Physik 43: 810–820.ADSCrossRefGoogle Scholar
  29. Fortov, V.E. 2009. Extreme States of Matter. Moskva: FizMatGis.Google Scholar
  30. Fortov, V.E. 2011. Extreme States of Matter: On Earth and in the Cosmos. Berlin: Springer.CrossRefGoogle Scholar
  31. Fortov, V.E., and I.T. Yakubov. 1994. Nonideal Plasmas (in Russian). Moskva: Énergoatomizdat.Google Scholar
  32. Fortov, V.E., R.I. Ilkaev, V.A. Arinin, V.V. Burtzev, V.A. Golubev, I.L. Iosilevskiy, et al. 2007. Phase Transition in a Strongly Nonideal Deuterium Plasma Generated by Quasi-Isentropical Compression at Megabar Pressures. Physical Review Letters 99: 185001.ADSCrossRefGoogle Scholar
  33. Ginzburg, V.L., and L.P. Pitaevskii. 1987. Quantum Nyquist Formula and the Applicability Ranges of the Callen–Welton Formula. Soviet Physics Uspekhi 30: 168–171.ADSMathSciNetCrossRefGoogle Scholar
  34. Ichimaru, S. 1973. Basic Principles of Plasma Physics. Reading: Benjamin.Google Scholar
  35. Ichimaru, S. 1992. Statistical Plasma Physics. Redwood: Addison-Wesley.zbMATHGoogle Scholar
  36. Ingold, G.-L. 2002. Path Integrals and Their Application to Dissipative Quantum Systems. In Coherent Evolution in Noisy Environments, ed. A. Buchleitner and K. Hornberger, vol. 611, 1–53. Lecture Notes in Physics. Berlin: Springer.Google Scholar
  37. Johnson, J.B. 1928. Thermal Agitation of Electricity in Conductors. Physics Review 32: 97–109.ADSCrossRefGoogle Scholar
  38. Klein, O. 1922. Zur statistischen Theorie der Suspensionen und Lösungen. Arkiv Fr Matematik, Astronomi Och Fysik 16: 1–51.zbMATHGoogle Scholar
  39. Klimontovich, Y.L. 1967. Statistical Theory of Nonequilibrium Processes in Plasmas. Oxford: Pergamon.Google Scholar
  40. Klimontovich, Y.L. 1982. Statistical Physics (in Russian). Moscow: Nauka.Google Scholar
  41. Klimontovich, Y.L. 1983. The Kinietic Theory of Electromagnetic Processes. Berlin: Springer.CrossRefGoogle Scholar
  42. Klimontovich, Y.L. 1986. Statistical Physics. New York: Harwood.Google Scholar
  43. Klimontovich, Y.L. 1997. Statistical Theory of Open Systems. Amsterdam: Kluwer.zbMATHGoogle Scholar
  44. Klimontovich, Y.L. 2001. Statistical Theory of Open Systems (in Russian). Vol. III. Physics of Open Quantum Systems. Moskva: Janus.Google Scholar
  45. Klimontovich, Y.L., and V.P. Silin. 1960. The Spectra of Systems of Interacting Particles and Collective Losses During Passage of Charged Particles Through Matter. Soviet Physics Uspekhi 3: 84–114.ADSMathSciNetCrossRefGoogle Scholar
  46. Kraeft, W.D., D. Kremp, W. Ebeling, and G. Röpke. 1986. Quantum Statistics of Charged Particle Systems. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
  47. Kremp, D., M. Schlanges, and W.D. Kraeft. 2005. Quantum Statistics of Nonideal Plasmas. Berlin: Springer.zbMATHGoogle Scholar
  48. Kubo, R. 1957a. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan12: 570–586.ADSMathSciNetCrossRefGoogle Scholar
  49. Kubo, R. 1957b. Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance. Journal of the Physical Society of Japan 12: 1203–1211.ADSMathSciNetCrossRefGoogle Scholar
  50. Kubo, R. 1959. Some Aspects of the Statistical Mechanical Theory of irreversible Processes. In Lectures on Theoretical Physics, ed. E. Brittin and L.G. Dunham, 120–203. Lectures on Theoretical Physics. New York: Interscience.Google Scholar
  51. Landau, L.D. 1936. The Kinetic Equation for the Case of Coulomb Interaction. Physikalische Zeitschrift der Sowjetunion 10: 154.Google Scholar
  52. Landau, L.D. 1937. The Kinetic Equation for the Case of Coulomb Interaction. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 7: 203.zbMATHGoogle Scholar
  53. Landau, L.D., and E.M. Lifshitz. 1976. Statistical Physics (Part I). Moscow: Nauka.Google Scholar
  54. Landau, L.D., and E.M. Lifshitz. 1990. Statistical Physics. New York: Pergamon.zbMATHGoogle Scholar
  55. Lifshitz, E.M., and L.P. Pitaevskii. 1981. Physical Kinetics. Vol. 10. Course of Theoretical Physics. New York: Pergamon.Google Scholar
  56. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. 1953. Equation of State Calculations by Fast Computing Machines Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21: 1087–1092.ADSCrossRefGoogle Scholar
  57. Militzer, B., and E.L. Pollock. 2000. Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen. Physical Review E 61: 3470–3482.ADSCrossRefGoogle Scholar
  58. Nellis, W.J., S.T. Weir, and A.C. Mitchell. 1999. Minimum Metallic Conductivity of fluid Hydrogen at 140 GPa. Physical Review B 59: 3434–3449.ADSCrossRefGoogle Scholar
  59. Nyquist, H. 1928. Thermal Agitation of Electric Charge in Conductors. Physical Review 32: 110–113.ADSCrossRefGoogle Scholar
  60. Pauli, W. 1928. Über das H-theorem vom Anwachsen der Entropie vom Standpunkt der neuen Quantenmechanik. In Probleme der Modernen Physik—Festschrift zum 60. Geburtstage A. Sommerfelds, ed. P. Debye, 30–45. Leipzig: Hirzel.Google Scholar
  61. Pines, D. 1961. The Many Body Problem—A Lecture Note. New York: Benjamin.zbMATHGoogle Scholar
  62. Pines, D. 1963. Elementary Excitations in Solids. Lecture Notes and Supplements in Physics. New York: Benjamin.zbMATHGoogle Scholar
  63. Planck, M. 1911. Eine neue Strahlungshypothese. Verhandlungen der Deutschen Physikalischen Gesellschaft 13: 138–148.zbMATHGoogle Scholar
  64. Planck, M. 1917. Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften 24: 324–341.Google Scholar
  65. Pöschel, T., and S. Luding, eds. 2001. Granular Gases. Berlin: Springer.zbMATHGoogle Scholar
  66. Redmer, R. 1997. Physical Properties of Dense, Low-Temperature Plasmas. Physics Reports 282: 35–157.ADSCrossRefGoogle Scholar
  67. Redmer, R., and G. Röpke. 2010. Progress in the Theory of Dense Strongly Coupled Plasmas. Contributions to Plasma Physics 50: 970–985.ADSCrossRefGoogle Scholar
  68. Silin, V.P., and A.A. Rukhadse. 1961. Electromagnetic Properties of Plasmas and Plasma-Like Matter (in Russian). Moskva: Atomizdat.Google Scholar
  69. Sitenko, O.G. 1982. Fluctuations and Nonlinear Wave Interactions in Plasmas. Oxford: Pergamon Press.CrossRefGoogle Scholar
  70. Spitzer, L. 1962. Physics of Fully Ionized Plasmas. New York: Wiley.Google Scholar
  71. Taylor, G.I. 1922. Diffusion by Continuous Movements. Proceedings of the London Mathematical Society Series 2 (20): 196–212.CrossRefGoogle Scholar
  72. Ternovoi, V. Ya., A.S. Filimonov, V.E. Fortov, S.V. Kvitov, D.D. Nikolaev, et al. 1999. Thermodynamic Properties and Electrical Conductivity of Hydrogen Under Multiple Shock Compression to 150 GPa. Physica B 265: 6–11.ADSCrossRefGoogle Scholar
  73. Tolman, R. 1938. The Principles of Statistical Physics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  74. Vlasov, A.A. 1945. On the Kinetic Theory of an Assembly of Particles with Collective Interaction. Russian Physics Journal 9: 25–40.MathSciNetzbMATHGoogle Scholar
  75. Vlasov, A.A. 1950. Many-Particle Theory. Moscow: Gostekhizdat.Google Scholar
  76. von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.zbMATHGoogle Scholar
  77. Weir, S.T., A.C. Mitchell, and W.J. Nellis. 1996. Metallization of fluid Molecular Hydrogen at 140 GPa (1.4 Mbar). Physical Review Letters 76: 1860–1863.ADSCrossRefGoogle Scholar
  78. Zamalin, V.M., G.E. Norman, and V.S. Filinov. 1977. The Monte Carlo Method in Statistical Thermodynamics (in Russian). Moscow: Nauka.Google Scholar
  79. Zubarev, D.N., V. Morozov, and G. Röpke, eds. 1996. Statistical Mechanics of Nonequilibrium Processes. Vol. 1. Basic Concepts, Kinetic Theory. Weinheim: Wiley-VCH.zbMATHGoogle Scholar
  80. Zubarev, D.N., V. Morozov, and G. Röpke, eds. 1997. Statistical Mechanics of Nonequilibrium Processes. Vol. 2. Relaxation and Hydrodynamic Processes. Weinheim: Wiley-VCH.zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Werner Ebeling
    • 1
  • Thorsten Pöschel
    • 2
  1. 1.FB PhysikHumboldt Universität zu BerlinBerlinGermany
  2. 2.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations