Quantum Statistics of Dilute Plasmas

  • Werner Ebeling
  • Thorsten Pöschel
Part of the Lecture Notes in Physics book series (LNP, volume 953)


The development of a systematic statistical theory for systems with Coulomb interactions is related to characteristic problems:
  1. 1.

    Debye’s screening problem,

  2. 2.

    Wigner’s problem of lattice formation,

  3. 3.

    Herzfeld’s bound state problem.



  1. Alastuey, A., and A. Perez. 1992. Virial Expansion of the Equation of State of a Quantum Plasma. Europhysics Letters 20: 19–24.ADSCrossRefGoogle Scholar
  2. Alastuey, A., and A. Perez. 1996. Virial Expansions for Quantum Plasmas: Fermi-Bose Statistics. Physical Review E 53: 5714–5728.ADSCrossRefGoogle Scholar
  3. Alastuey, A., V. Ballenegger, and W. Ebeling. 2015. Comment on ‘Direct Linear Term in the Equation of State of Plasmas’ by Kraeft et al. Physical Review E 92: 047101. (see also Kraeft et al. (2015b)).Google Scholar
  4. Arkhipov, Yu.V., F.B. Baimbetov, and A.E. Davletov. 2000. Thermodynamics of Dense High-Temperature Plasmas: Semiclassical Approach. The European Physical Journal D 8: 299–304.ADSCrossRefGoogle Scholar
  5. Arkhipov, Yu.V., F.B. Baimbetov, and A.E. Davletov. 2011. Self-Consistent Chemical Model of Partially Ionized Plasmas. Physical Review E 83: 016405.ADSCrossRefGoogle Scholar
  6. Baimbetov, F.B., M.A. Bekenov, and T.S. Ramazanov. 1995. Effective Potential of a Semiclassical Hydrogen Plasma. Physics Letters A 197: 157–158.ADSCrossRefGoogle Scholar
  7. Barker, A.A. 1968. Monte Carlo Study of a Hydrogenous Plasma Near the Ionization Temperature. Physical Review 171: 186–188.ADSCrossRefGoogle Scholar
  8. Barker, A.A. 1969. Radial Distribution Functions for a Hydrogenous Plasma in Equilibrium. Physical Review 179: 129–134.ADSCrossRefGoogle Scholar
  9. Beth, E., and G.E. Uhlenbeck. 1937. The Quantum Theory of the Non-ideal Gas. II. Behaviour at Low Temperatures. Physica 4: 915–924.ADSzbMATHCrossRefGoogle Scholar
  10. Bogolyubov, N.N. 1946. Kinetic Equations. Journal of Physics 10: 265–274.MathSciNetzbMATHGoogle Scholar
  11. Bogolyubov, N.N. 2005–2009. Collected Papers. Vols. 1–12. Moscow: Fizmatlit.Google Scholar
  12. Brillouin, L. 1931a. Die Quantenstatistik und ihre Anwendung auf die Elektronentheorie der Metalle. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  13. Brillouin, L. 1931b. Les statistiques quantiques et leurs applications. Paris: Presses Universitaires de France - PUF.zbMATHGoogle Scholar
  14. Brown, L.S., and L.G. Yaffe. 2001. Effective Field Theory of Highly Ionized Plasmas. Physics Reports 340: 1–164.ADSzbMATHCrossRefGoogle Scholar
  15. Debye, P., and E. Hückel. 1923. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift 24: 185–206.zbMATHGoogle Scholar
  16. Deutsch, C. 1977. Nodal Expansion in a Real Matter Plasma. Physics Letters A 60: 317–318.ADSCrossRefGoogle Scholar
  17. DeWitt, H.E. 1962. Evaluation of the Quantum-Mechanical Ring Sum with Boltzmann Statistics. Journal of Mathematical Physics 3: 1216–1228.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. DeWitt, H.E. 1976. Asymptotic Form of the Classical One-Component Plasma Fluid Equation of State. Physical Review A 14: 1290–1293.ADSCrossRefGoogle Scholar
  19. DeWitt, H.E., M. Schlanges, A.Y. Sakakura, and W.D. Kraeft. 1995. Low Density Expansion of the Equation of State for a Quantum Electron Gas. Physics Letters A 197: 326–329.ADSCrossRefGoogle Scholar
  20. Ebeling, W. 1967. Statistische Thermodynamik der Bindungszustände in Plasmen. Annalen der Physik (Berlin) 19: 104–112.ADSCrossRefGoogle Scholar
  21. Ebeling, W. 1968a. Ableitung der freien Energie von Quantenplasmen kleiner Dichte aus den exakten Streuphasen. Annalen der Physik (Berlin) 477: 33–39.ADSCrossRefGoogle Scholar
  22. Ebeling, W. 1968b. The Exact Free Energy of Low Density Quantum Plasmas. Physica 40: 290–292.ADSzbMATHCrossRefGoogle Scholar
  23. Ebeling, W. 1969. Zur Quantenstatistik der Bindungszustände in Plasmen. I Cluster- Entwicklungen. Annalen der Physik (Berlin) 22: 383–391.ADSzbMATHCrossRefGoogle Scholar
  24. Ebeling, W. 1974. Statistical Derivation of the Mass Action Law or Interacting Gases and Plasmas. Physica 73: 573–584.ADSCrossRefGoogle Scholar
  25. Ebeling, W. 2016. The Work of Baimbetov on Nonideal Plasmas and Some Recent Developments. Contributions to Plasma Physics 56: 163–175.ADSCrossRefGoogle Scholar
  26. Ebeling, W., and G.E. Norman. 2003. Coulombic Phase Transitions in Dense Plasmas. Journal of Statistical Physics 110: 861–877.zbMATHCrossRefGoogle Scholar
  27. Ebeling, W., H.J. Hoffmann, and G. Kelbg. 1967. Quantenstatistik des Hochtemperatur-Plasmas im thermodynamischen Gleichgewicht. Contributions to Plasma Physics 7: 233–248.Google Scholar
  28. Ebeling, W., G. Kelbg, and K. Rohde. 1968. Binäre SLATER-Summen und Verteilungsfunktionen für quantenstatistische Systeme mit COULOMBWechselwirkung. II. Annalen der Physik (Berlin) 476 (5–6): 235–243.ADSCrossRefGoogle Scholar
  29. Ebeling, W., W.D. Kraeft, and D. Kremp. 1976. Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids. Berlin: Akademie-Verlag.Google Scholar
  30. Ebeling, W., V.E. Fortov, and V.S. Filinov. 2017. Quantum Statistics of Dense Gases and Nonideal Plasmas. Springer Series in Plasma Science and Technology. Cham: Springer.zbMATHGoogle Scholar
  31. Eggert, J. 1919. Über den Dissoziationzustand der Fixsterngase. Physikalische Zeitschrift 20: 570–574.Google Scholar
  32. Falkenhagen, H. 1971. Theorie der Elektrolyte. Leipzig: Hirzel.zbMATHGoogle Scholar
  33. Falkenhagen, H., and W. Ebeling. 1971. Equilibrium Properties of Ionized Dilute Electrolytes. In Ionic Interactions, ed. S. Petrucci, vol. 1, 1–59. New York/London: Academic.Google Scholar
  34. Filinov, V.S., M. Bonitz, W. Ebeling, and V.E. Fortov. 2001. Thermodynamics of Hot Dense H-Plasmas: Path Integral Monte Carlo Simulations and Analytical Approximations. Plasma Physics and Controlled Fusion 43 (6): 743–759.ADSCrossRefGoogle Scholar
  35. Filinov, A.V., M. Bonitz, and W. Ebeling. 2003. Improved Kelbg Potential for Correlated Coulomb Systems. Journal of Physics A: Mathematical and General 36 (22): 5957–5962.ADSzbMATHCrossRefGoogle Scholar
  36. Filinov, V.S., M. Bonitz, P. Levashov, V.E. Fortov, W. Ebeling, M. Schlanges, and S.W. Koch. 2003. Plasma Phase Transition in Dense Hydrogen and Electron–Hole Plasmas. Journal of Physics A: Mathematical and General 36 (22): 6069–6076.ADSzbMATHCrossRefGoogle Scholar
  37. Filinov, A.V., V.O. Golubnychiy, M. Bonitz, W. Ebeling, and J.W. Dufty. 2004. Temperature-Dependent Quantum Pair Potentials and Their Application to Dense Partially Ionized Hydrogen Plasmas. Physical Review E 70: 046411.ADSCrossRefGoogle Scholar
  38. Fortov, V.E. 2009. Extreme States of Matter (in Russian). Moskva: Fiz-MatGis.Google Scholar
  39. Fortov, V.E. 2011. Extreme States of Matter: On Earth and in the Cosmos. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  40. Friedman, H.L. 1962. Ionic Solution Theory. New York: Interscience.Google Scholar
  41. Gombás, P. 1965. Pseudopotentiale. Fortschritte der Physik 13: 137–156.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. Hansen, J.P., and I.R. McDonald. 1981. Microscopic Simulation of a Strongly Coupled Hydrogen Plasma. Physical Review A 23: 2041–2059.ADSCrossRefGoogle Scholar
  43. Hellmann, H. 1935. A New Approximation Method in the Problem of Many Electrons. The Journal of Chemical Physics 3: 61–61.ADSCrossRefGoogle Scholar
  44. Hemmer, P.C., H. Helge, and S. Kjelstrup Ratkje, eds. 1996. The Collected Works of Lars Onsager. Singapore: World Scientific.Google Scholar
  45. Hoffmann, H.J., and W. Ebeling. 1968a. On the Equation of State of Fully Ionized Quantum Plasmas. Physica 39: 593–598.ADSCrossRefGoogle Scholar
  46. Hoffmann, H.J., and W. Ebeling. 1968b. Quantenstatistik des Hochtemperatur-Plasmas im thermodynamischen Gleichgewicht. II. Die freie Energie im Temperaturbereich 106 bis 108 oK. Contributions to Plasma Physics 8 (1): 43–56.Google Scholar
  47. Ichimaru, S. 1992. Statistical Plasma Physics. Redwood: Addison-Wesley.zbMATHGoogle Scholar
  48. Kalman, G.J., J.M. Rommel, and K. Blagoev, eds. 1998. Strongly Coupled Coulomb Systems. New York: Springer.Google Scholar
  49. Kelbg, G. 1963a. Quantenstatistik der Gase mit Coulomb-Wechselwirkung. Annalen der Physik 467: 354–360.ADSMathSciNetCrossRefGoogle Scholar
  50. Kelbg, G. 1963b. Theorie des Quanten-Plasmas. Annalen der Physik 467: 219–224.ADSMathSciNetCrossRefGoogle Scholar
  51. Kelbg, G. 1964. Klassische statistische Mechanik der Teilchen-Mischungen mit sortenabhängigen weitreichenden zwischenmolekularenWechselwirkungen. Annalen der Physik (Leipzig) 14: 394–403.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. Kelbg, G. 1972. Einige Methoden der statistischen Thermodynamik hochionisierter Plasmen, Ergebnisse der Plasmaphysik und Gaselektronik. Vol. Bd. III. Berlin: Akademie-Verlag.Google Scholar
  53. Kelbg, G., and H.J. Hoffmann. 1964. Quantenstatistik realer Gase und Plasmen. Annalen der Physik 469: 310–318.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. Kleinert, H. 1995. Path Integrals in Quantum Mechanics, Statistics and Polymer Physics. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  55. Klimontovich, Yu.L. 1982. Statistical Physics (in Russian) Moscow: Nauka.Google Scholar
  56. Klimontovich, Yu.L., and W. Ebeling. 1972. Quantum Kinetic Equations for a Nonideal Gas and a Nonideal Plasma. Journal of Experimental and Theoretical Physics 36: 476–481.ADSGoogle Scholar
  57. Kraeft, W.D., and D. Kremp. 1968. Quantum-Statistical Mechanics of a System of Charged Particles at High Temperatures. Zeitschrift für Physik 208 (5): 475–485.ADSCrossRefGoogle Scholar
  58. Kraeft, W.D., D. Kremp, W. Ebeling, and G. Röpke. 1986. Quantum Statistics of Charged Particle Systems. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
  59. Kraeft, W.D., D. Kremp, and G. Röpke. 2015a. Direct Linear Term in the Equation of State of Plasmas. Physical Review E 91: 013108.ADSCrossRefGoogle Scholar
  60. Kraeft, W.D., D. Kremp, and G. Röpke. 2015b. Reply to Alastuey, Ballenegger, and Ebeling 2015. Physical Review E 92: 047102.ADSCrossRefGoogle Scholar
  61. Kremp, D., and W.D. Kraeft. 1972. Analyticity of the Second Virial Coefficient as a Function of the Interaction Parameter and Compensation Between Bound and Scattering States. Physical Review A 38: 167–168.Google Scholar
  62. Kremp, D., M. Schlanges, and W.D. Kraeft. 2005. Quantum Statistics of Nonideal Plasmas. Berlin: Springer.zbMATHGoogle Scholar
  63. Landau, L.D., and E.M. Lifshitz. 1980. Statistical Physics. Oxford: Butterworth-Heinemann.zbMATHGoogle Scholar
  64. Larkin, A.I. 1960. Thermodynamic Functions of a Low-Temperature Plasma. Journal of Experimental and Theoretical Physics 11: 1363–1364.Google Scholar
  65. Macke, W. 1950. Über dieWechselwirkungen im Fermi-Gas. Zeitschrift für Naturforschung A 5a: 192–208.Google Scholar
  66. Mayer, J.E. 1950. The Theory of Ionic Solutions. The Journal of Chemical Physics 18: 1426–1436.ADSCrossRefGoogle Scholar
  67. Milner, S.R. 1912. The Virial of a Mixture of Ions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 23: 551–578.zbMATHCrossRefGoogle Scholar
  68. Montroll, E., and J. Ward. 1958. Quantum Statistics of Interacting Particles. The Physics of Fluids 1: 55–72.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. Morita, T. 1959. Equation of State of High Temperature Plasma. Progress of Theoretical Physics (Kyoto) 22: 757–774.ADSzbMATHCrossRefGoogle Scholar
  70. Ortner, J. 1999. Equation of States for Classical Coulomb Systems: Use of the Hubbard-Schofield Approach. Physical Review E 59: 6312–6327.ADSCrossRefGoogle Scholar
  71. Ortner, J., I. Valuev, and W. Ebeling. 1999. Semiclassical Dynamics and Time Correlations in Two-component Plasmas. Contributions to Plasma Physics 39 (4): 311–321.ADSCrossRefGoogle Scholar
  72. Ortner, J., I. Valuev, and W. Ebeling. 2000. Electric Microfield Distribution in Two-Component Plasmas. Theory and Simulations. Contributions to Plasma Physics 40: 555–568.ADSCrossRefGoogle Scholar
  73. Pines, D., and P. Nozieres. 1966. The Theory of Quantum Liquids. New York: Benjamin.zbMATHGoogle Scholar
  74. Planck, M. 1924. Zur Quantenstatistik des Bohrschen Atommodells. Annalen der Physik 75: 673–684.ADSCrossRefGoogle Scholar
  75. Riewe, K., and R. Rompe. 1938. Über die Besetzungszahlen der Elektronenterme in einem teilweise ionisierten Gas. Zeitschrift für Physik 111: 79–94.ADSCrossRefGoogle Scholar
  76. Rohde, K., G. Kelbg, and W. Ebeling. 1968. Binäre SLATER-Summen und Verteilungsfunktionen für quantenstatistische Systeme mit COULOMBWechselwirkung. I. Annalen der Physik (Berlin) 477: 1–14.ADSCrossRefGoogle Scholar
  77. Sadykova, S., and W. Ebeling. 2007. Electric Microfield Distributions in Dense One- and Two-component Plasmas. Contributions to Plasma Physics 47: 659–669.ADSCrossRefGoogle Scholar
  78. Saha, M.N. 1920. Ionization in the Solar Chromosphere. Philosophical Magazine Series VI 40: 472–478.CrossRefGoogle Scholar
  79. Schmitz, G., and D. Kremp. 1967. Quantenmechanische Verteilungsfunktion für ein Elektronengas. Zeitschrift für Naturforschung A 23: 1392–1395.ADSGoogle Scholar
  80. Starostin, A.N., and V.C. Roerich. 2006. Bound States in Nonideal Plasmas: Formulation of the Partition Function and Application to the Solar Interior. Plasma Sources Science and Technology 15: 410–415.ADSCrossRefGoogle Scholar
  81. Starostin, A.N., V.C. Roerich, and R.M. More. 2003. How Correct is the EOS of Weakly Nonideal Hydrogen Plasmas? Contributions to Plasma Physics 43: 369–372.ADSCrossRefGoogle Scholar
  82. Stolzmann, W., and W. Ebeling. 1998. New Padé Approximations for the Free Charges in Two-Component Strongly Coupled Plasmas Based on the Unsöld-Berlin-Montroll Asymptotics. Physics Letters A 248: 242–246.ADSCrossRefGoogle Scholar
  83. Storer, R.G. 1968a. Path-Integral Calculation of the Quantum-Statistical Density Matrix for Attractive Coulomb Forces. Journal of Mathematical Physics 9: 964–970.ADSCrossRefGoogle Scholar
  84. Storer, R.G. 1968b. Radial Distribution Function for a Quantum Plasma. Physical Review 176: 326–331.ADSCrossRefGoogle Scholar
  85. Trigger, S.A., W. Ebeling, V.S. Filinov, V.E. Fortov, and M. Bonitz. 2003. Internal Energy of High Density Hydrogen: Analytic Approximations Compared with Path Integral Monte Carlo Calculations. Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 123: 527–542.Google Scholar
  86. Trubnikov, B.A., and V.F. Elesin. 1965. Quantum Correlation Functions in a Maxwellian Plasma. Journal of Experimental and Theoretical Physics 20: 866–872.MathSciNetzbMATHGoogle Scholar
  87. Uhlenbeck, G.E., and E. Beth. 1936. The Quantum Theory of the Non-ideal Gas I. Deviations from the Classical Theory. Physica 3: 729–745.ADSzbMATHCrossRefGoogle Scholar
  88. Vedenov, A.A., and A.I. Larkin. 1959. Equation of State of Plasmas (in Russian) Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 36: 1133.Google Scholar
  89. von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.zbMATHGoogle Scholar
  90. Wigner, E. 1934. On the Interaction of Electrons in Metals. Physical Review 46: 1002–1011.ADSzbMATHCrossRefGoogle Scholar
  91. Wigner, E. 1938. The Transition State Method. Transactions of the Faraday Society 34: 29–41.CrossRefGoogle Scholar
  92. Zamalin, V.M., G.E. Norman, and V.S. Filinov. 1977. The Monte Carlo Method in Statistical Thermodynamics (in Russian). Moscow: Nauka.Google Scholar
  93. Zelener, B.V., G.E. Norman, and V.S. Filinov. 1981. Perturbation Theory and Pseudopotential in Statistical Thermodynamics (in Russian). Moscow: Nauka.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Werner Ebeling
    • 1
  • Thorsten Pöschel
    • 2
  1. 1.FB PhysikHumboldt Universität zu BerlinBerlinGermany
  2. 2.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations