Density Operators and Other Tools of Quantum Statistics

  • Werner Ebeling
  • Thorsten Pöschel
Part of the Lecture Notes in Physics book series (LNP, volume 953)


In this chapter, we will introduce useful tools of Quantum Statistics. Most of them will be used in later chapters of this book to solve concrete problems. Our survey covers, of course, the most prominent methods such as density operators introduced by von Neumann and Landau, Wigner’s phase-space functions method, and Bogolyubov’s method of reduced density operators. Matsubara’s thermodynamical Green’s functions and real-time Green’s functions are important methods in the field of quantum plasmas but are discussed here only rather briefly.


  1. Abrikosov, A.A., L.P. Gorkov, and I.E. Dzyaloshinskii. 1965. Methods of Quantum Field Theory in Statistical Physics. Oxford: Pergamon Press.Google Scholar
  2. Arndt, S., W.D. Kraeft, and J. Seidel. 1996. Two-Particle Energy Spectrum in Dense Electron–Hole Plasmas. Physica Status Solidi (B) 194: 601–617.ADSCrossRefGoogle Scholar
  3. Ashcroft, N., and N.D. Mermin. 1976. Solid State Physics. Boston: Cengage Learning.zbMATHGoogle Scholar
  4. Blaschke, D., M. Buballa, A. Dubinin, G. Röpke, and D. Zablocki. 2014. Generalized Beth-Uhlenbeck Approach to Mesons and Diquarks in Hot Dense Quark Matter. Annals of Physics 348: 228–255.ADSMathSciNetCrossRefGoogle Scholar
  5. Blochinzew, D.J. 1953. Quantenmechanik. Berlin: Deutscher Verlag der Wissenschaften.Google Scholar
  6. Bobrov, V.B., and S.A. Trigger. 2014. Virial Theorem and Gibbs Thermodynamic Potential for Coulomb Systems. Physics of Plasmas 21: 100703.ADSCrossRefGoogle Scholar
  7. Bogolyubov, N.N. 2005–2009. Collected Papers. Vol. 1–12. Moscow: Fizmatlit.Google Scholar
  8. Bonch-Bruevich, V.L., and S.V. Tyablikov. 1961. Method of Green Functions in Statistical Physics. Moscow: Nauka.zbMATHGoogle Scholar
  9. Dirac, P.A.M. 1932. Principles of Quantum Mechanics. Oxford: Clarendon Press.Google Scholar
  10. Dyson, F.J., and A. Lenard. 1967. Stability of Matter I. Journal of Mathematical Physics 8: 423–434.ADSMathSciNetCrossRefGoogle Scholar
  11. Dyson, F.J., and A. Lenard. 1968. Stability of Matter. II. Journal of Mathematical Physics 9: 698–711.ADSMathSciNetCrossRefGoogle Scholar
  12. Ebeling, W., and I. Sokolov. 2005. Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems. Singapore: World Scientific.CrossRefGoogle Scholar
  13. Ebeling, W., W.D. Kraeft, and D. Kremp. 1976. Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids. Berlin: Akademie-Verlag.Google Scholar
  14. Ebeling, W., W.D. Kraeft, and D. Kremp. 1977. Nonideal Plasmas. In Proceedings of the XIIIth International Conference on Phenomena in Ionized Gases, ed. P. Bachmann, 73–90. Berlin: Physikalische Gesellschaft der DDR.Google Scholar
  15. Ebeling, W., D. Blaschke, R. Redmer, H. Reinholz, and G. Röpke. 2009. The Influence of Pauli Blocking Effects on the Properties of Dense Hydrogen. Journal of Physics A: Mathematical and Theoretical 42: 214033.ADSCrossRefGoogle Scholar
  16. Ebeling, W., D. Blaschke, R. Redmer, H. Reinholz, and G. Röpke. 2010. The Influence of Pauli Blocking Effects on the Mott Transition in Dense Hydrogen. In Metal-to-Nonmetal Transitions, ed. Ronald Redmer, Friedrich Hensel, and Bastian Holst. Springer Series in Materials Science, vol. 132, 37–61. Berlin: Springer.CrossRefGoogle Scholar
  17. Ecker, G., and W. Weizel. 1956. Zustandssumme und effektive Ionisierungsspannung eines Atoms im Inneren des Plasmas. Annalen der Physik 452: 126–140.ADSCrossRefGoogle Scholar
  18. Fetter, A.I., and J.D. Walecka. 1971. Quantum Theory of Many Particle Systems. New York: Mc Graw Hill.Google Scholar
  19. Feynman, R.P. 1972. Statistical Mechanics. Reading: Benjamin.Google Scholar
  20. Feynman, R.P., and A.R. Hibbs. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill.zbMATHGoogle Scholar
  21. Fick, E. 1981. Einführung in die Grundlagen der Quantentheorie. Leipzig: Akademischer Verlag.zbMATHGoogle Scholar
  22. Huang, K. 2001. Introduction to Statistical Physics. London: Taylor & Francis.zbMATHGoogle Scholar
  23. Ichimaru, S. 1992. Statistical Plasma Physics. Redwood: Addison-Wesley.zbMATHGoogle Scholar
  24. Jaynes, E.T. 1985. Macroscopic Prediction. In Complex Systems – Operational Approaches in Neurobiology, Physics, and Computers, ed. Hermann Haken, vol. 31, 254–269. Springer Series in Synergetics. Berlin: Springer.CrossRefGoogle Scholar
  25. Kadanoff, L.P., and G. Baym. 1962. Quantum Statistical Mechanics. New York: Benjamin.zbMATHGoogle Scholar
  26. Karasiev, V.V., T. Sjostrom, and S.B. Trickey. 2012. Comparison of DFT and Finite Temperatature HF Approximation. Physical Review E 86: 056704.ADSCrossRefGoogle Scholar
  27. Klimontovich, Yu.L. 1982. Statistical Physics (in Russian). Moscow: Nauka.Google Scholar
  28. Klimontovich, Yu.L. 1986. Statistical Physics. New York: Harwood.Google Scholar
  29. Kohn, W., and L.J. Sham. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 140: A1133–A1138.ADSMathSciNetCrossRefGoogle Scholar
  30. Kraeft, W.D., D. Kremp, W. Ebeling, and G. Röpke. 1986. Quantum Statistics of Charged Particle Systems. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
  31. Kremp, D., M. Schlanges, and W.D. Kraeft. 2005. Quantum Statistics of Nonideal Plasmas. Berlin: Springer.zbMATHGoogle Scholar
  32. Landau, L.D., and E.M. Lifshitz. 1976. Statistical Physics (Part I). Moscow: Nauka.Google Scholar
  33. Landau, L.D., and E.M. Lifshitz. 1980. Statistical Physics. Oxford: Butterworth-Heinemann.zbMATHGoogle Scholar
  34. Lieb, E.H., and B. Simon. 1973. Thomas-Fermi Theory Revisited. Physical Review Letters 31: 681–683.ADSCrossRefGoogle Scholar
  35. Lieb, E.H., and W.E. Thirring. 1975. Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter. Physical Review Letters 35: 687–689.ADSCrossRefGoogle Scholar
  36. Martin, P.C., and J. Schwinger. 1959. Theory of Many-Particle Systems I. Physical Review 115: 1342–1373.ADSMathSciNetCrossRefGoogle Scholar
  37. Matsubara, T. 1955. A New Approach to Quantum-Statistical Mechanics. Progress of Theoretical Physics 14: 351.ADSMathSciNetCrossRefGoogle Scholar
  38. Montroll, E., and J. Ward. 1958. Quantum Statistics of Interacting Particles. The Physics of Fluids 1: 55–72.ADSMathSciNetCrossRefGoogle Scholar
  39. Parr, R.G., and W. Yang. 1989. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press.Google Scholar
  40. Pines, D. 1963. Elementary Excitations in Solids. Lecture Notes and Supplements in Physics. New York: Benjamin.zbMATHGoogle Scholar
  41. Pines, D., and P. Nozieres. 1966. The Theory of Quantum Liquids. New York: Benjamin.zbMATHGoogle Scholar
  42. Redmer, R. 1997. Physical Properties of Dense, Low-Temperature Plasmas. Physics Reports 282: 35–157.ADSCrossRefGoogle Scholar
  43. Redmer, R., B. Holst, and F. Hensel, eds. 2010. Metal-to-Nonmetal Transitions. Springer Series in Materials Science. Berlin: Springer.Google Scholar
  44. Röpke, G., K. Kilimann, D. Kremp, and W.D. Kraeft. 1978. Two-Particle Energy Shifts in Low Density Non-ideal Plasmas. Physics Letters A 68, 329–332.ADSCrossRefGoogle Scholar
  45. Röpke, G., N.-U. Bastian, D. Blaschke, T. Klähn, S. Typel, and H.H. Wolter. 2013. Cluster-Virial Expansion for Nuclear Matter within a Quasiparticle Statistical Approach. Nuclear Physics A 897: 70–92.ADSCrossRefGoogle Scholar
  46. Stratonovich, R.L. 1975. Information Theory (in Russian). Moscow: Sovetskoe Radio.Google Scholar
  47. Subarew, D.N. 1976. Statistische Thermodynamik des Nichtgleichgewichtes. Berlin: Akademie-Verlag.Google Scholar
  48. ter Haar, D. 1995. Elements of Statistical Mechanics. Oxford: Butterworth-Heinemann.zbMATHGoogle Scholar
  49. Thirring, W.E. 1980. Lehrbuch der Mathematischen Physik. Vol. 3: Quantenmechanik von Atomen und Molekülen, Quantenmechanik großer Systeme. Berlin: Springer.CrossRefGoogle Scholar
  50. Toda, M., R. Kubo, and N. Saito. 1983. Statistical Physics. Vols. I and II. Berlin: Springer.zbMATHGoogle Scholar
  51. Tolman, R. 1938. The Principles of Statistical Physics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  52. von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.zbMATHGoogle Scholar
  53. Zimmermann, R. 1988. Many Particle Theory of Highly Excited Semiconductors. Leipzig: Teubner.Google Scholar
  54. Zimmermann, R., K. Kilimann, W.D. Kraeft, D. Kremp, and G. Röpke. 1978. Dynamical Screening and Self Energy of Excitons in the Electronhole Plasma. Physica Status Solidi (B) 90: 175–187.ADSCrossRefGoogle Scholar
  55. Zubarev, D.N. 1974. Nonequilibrium Statistical Thermodynamics. New York: Consultants Bureau.Google Scholar
  56. Zubarev, D.N., V. Morozov, and G. Röpke, eds. 1996. Statistical Mechanics of Nonequilibrium Processes. Vol. 1: Basic Concepts, Kinetic Theory. Weinheim: Wiley-VCH.zbMATHGoogle Scholar
  57. Zubarev, D.N., V. Morozov, and G. Röpke, eds. 1997. Statistical Mechanics of Nonequilibrium Processes. Vol. 2: Relaxation and Hydrodynamic Processes. Weinheim: Wiley-VCH.zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Werner Ebeling
    • 1
  • Thorsten Pöschel
    • 2
  1. 1.FB PhysikHumboldt Universität zu BerlinBerlinGermany
  2. 2.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations