Advertisement

Ideal Quantum Gases

  • Werner Ebeling
  • Thorsten Pöschel
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 953)

Abstract

Planck’s theory of radiation which is the origin of quantum statistics, was semi-phenomenological based on concepts of electrodynamics, classical thermodynamics, and classical radiation theory.

References

  1. Anderson, M.H., J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. 1995. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269: 198–201.ADSCrossRefGoogle Scholar
  2. Bobrov, V.B., A.G. Zagorodny, and S.A. Trigger. 2015. Coulomb Potential of Interaction and Bose-Einstein Condensate. Low Temperature Physics 41: 1154–1163 (in Russian).Google Scholar
  3. Bogolyubov, N.N. 1991. Selected Works. Vol. II. Quantum and Classical Statistical Mechanics. New York: Gordon and Breach.Google Scholar
  4. Bohm, D., and D. Pines. 1951. A Collective Description of Electron Interactions I. Magnetic Interactions. Physics Review 82: 625–634.ADSMathSciNetCrossRefGoogle Scholar
  5. Bose, S.N. 1924a. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift fr Physik 26: 178–181.ADSCrossRefGoogle Scholar
  6. Bose, S.N. 1924b. Wärmegleichgewicht im Strahlungsfeld bei Anwesenheit von Materie. Zeitschrift fr Physik 27: 178–181.ADSCrossRefGoogle Scholar
  7. Davis, K.B., M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle. 1995. Bose-Einstein Condensation in a Gas of Sodium Atoms. Physical Review Letters 75: 3969–3973.ADSCrossRefGoogle Scholar
  8. DeWitt, H.E. 1961. Thermodynamic Functions of a Partially Degenerate, Fully Ionized Gas. Journal of Nuclear Energy, Part C Plasma Physics 2: 27–45.ADSCrossRefGoogle Scholar
  9. DeWitt, H.E. 1962. Evaluation of the Quantum-Mechanical Ring Sum with Boltzmann Statistics. Journal of Mathematical Physics 3: 1216–1228.ADSMathSciNetCrossRefGoogle Scholar
  10. DeWitt, H.E. 1966. Statistical Mechanics of High-Temperature Quantum Plasmas Beyond the Ring Approximation. Journal of Mathematical Physics 7: 616–626.ADSMathSciNetCrossRefGoogle Scholar
  11. Debye, P. 1912. Zur Theorie der Spezifischen Wärmen. Annalen der Physik 39: 789–839.ADSCrossRefGoogle Scholar
  12. Dirac, P.A.M. 1926. On the Theory of Quantum Mechanics. Proceedings of Royal Society London A: Mathematical, Physical and Engineering Sciences 112: 661–677.ADSCrossRefGoogle Scholar
  13. Ebeling, W. 1985. Statistical Thermodynamics of Fluid Hydrogen at High Energy Density. Physica A 130: 587–596.ADSCrossRefGoogle Scholar
  14. Ebeling, W., and D. Hoffmann. 2014. Eine Vorlage Einsteins in der Preußischen Akademie der Wissenschaften. Leibniz Online. http://www.leibnizsozietaet.de/wp-content/uploads/2014/12/EbelingHoffmann.pdf.
  15. Ebeling, W., W.D. Kraeft, and D. Kremp. 1976. Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids. Berlin: Akademie-Verlag.Google Scholar
  16. Ebeling, W., W.D. Kraeft, D. Kremp, and G. Röpke. 1986. Quantum Statistics of Coulomb Systems: Thermodynamic Functions and Phase Transitions. Physica 140a: 160–168.ADSCrossRefGoogle Scholar
  17. Einstein, A. 1907. Die Plancksche Theorie der Strahlung und die Theorie der Spezifischen Wärme. Annals of Physics 22: 180–190.CrossRefGoogle Scholar
  18. Einstein, A. 1924. Quantentheorie des Einatomigen Idealen Gases. Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl 22: 261–267.Google Scholar
  19. Einstein, A. 1925. Quantentheorie des Einatomigen Idealen Gases. Zweite Abhandlung. Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl 23: 3–14.zbMATHGoogle Scholar
  20. Fermi, E. 1926. Über die Wahrscheinlichkeit der Quantenzustände. Zeitschrift für Physik 26: 54–56.ADSCrossRefGoogle Scholar
  21. Feynman, R.P. 1972. Statistical Mechanics. Reading, MA: Benjamin.Google Scholar
  22. Fick, E. 1981. Einführung in die Grundlagen der Quantentheorie. Leipzig: Akademischer Verlag.zbMATHGoogle Scholar
  23. Fukushima, T. 2015. Precise and Fast Computation of Fermi-Dirac Integral of Integer and Half Integer Order by Piecewise Minimax Rational Approximation. Applied Mathematics and Computation 259: 708–729.MathSciNetCrossRefGoogle Scholar
  24. Huang, K. 1963. Statistical Mechanics. New York: Wiley.Google Scholar
  25. Huang, K. 2001. Introduction to Statistical Physics. London: Taylor & Francis.zbMATHGoogle Scholar
  26. Ichimaru, S. 1992. Statistical Plasma Physics. Redwood: Addison-Wesley.zbMATHGoogle Scholar
  27. Kirsten, C., and H.G. Körber, eds. 1975. Physiker über Physiker. Berlin: Akademie-Verlag.Google Scholar
  28. Klimontovich, Yu. L. 1982. Statistical Physics. Moscow: Nauka (in Russian).Google Scholar
  29. Kraeft, W.D., D. Kremp, W. Ebeling, and G. Röpke. 1986. Quantum Statistics of Charged Particle Systems. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
  30. Kremp, D., M. Schlanges, and W.D. Kraeft. 2005. Quantum Statistics of Nonideal Plasmas. Berlin: Springer.zbMATHGoogle Scholar
  31. Landau, L.D., and E.M. Lifshitz. 1976. Statistical Physics (Part I). Moscow: Nauka.Google Scholar
  32. Landau, L.D., and E.M. Lifshitz. 1980. Statistical Physics. Oxford: Butterworth-Heinemann.zbMATHGoogle Scholar
  33. Landau, L.D., and E.M. Lifshitz. 1990. Statistical Physics. New York: Pergamon.zbMATHGoogle Scholar
  34. Lether, F.G. 2000. Analytical Expansions and Numerical Approximations of Fermi-Dirac Integrals Fj(x) of Order j = −1 = 2 and j = 1∕2. Journal of Science Communication 15: 479–497.MathSciNetzbMATHGoogle Scholar
  35. Mayer, J.E. 1950. The Theory of Ionic Solutions. The Journal of Chemical Physics 18: 1426–1436.ADSCrossRefGoogle Scholar
  36. Pauli, W. 1925. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik 31: 765–783.ADSCrossRefGoogle Scholar
  37. Petrich, W., M.H. Anderson, J.R. Ensher, and E.A. Cornell. 1995. Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms. Physical Review Letters 74: 3352–3355.ADSCrossRefGoogle Scholar
  38. Pines, D. 1963. Elementary Excitations in Solids. Lecture Notes and Supplements in Physics. New York: Benjamin.zbMATHGoogle Scholar
  39. Pines, D., and P. Nozieres. 1966. The Theory of Quantum Liquids. New York: Benjamin.zbMATHGoogle Scholar
  40. Riemann, B. 1859. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie, 671–680.Google Scholar
  41. Toda, M., R. Kubo, and N. Saito. 1983. Statistical Physics. Vols. I and II. Berlin: Springer.zbMATHGoogle Scholar
  42. Treder, H.J. 1983. Große Physiker und ihre Probleme – Studien zur Geschichte der Physik. Berlin: Akademie Verlag.zbMATHGoogle Scholar
  43. Zimmermann, R. 1988. Many Particle Theory of Highly Excited Semiconductors. Leipzig: Teubner.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Werner Ebeling
    • 1
  • Thorsten Pöschel
    • 2
  1. 1.FB PhysikHumboldt Universität zu BerlinBerlinGermany
  2. 2.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations