Skip to main content

Thermochemical Data of Selected Phases in the FeOx–FeSO4–Fe2(SO4)3 System

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1425 Accesses

Abstract

Several recent studies have shown the potential of oxy-fuel combustion to reduce NOx(gas) and SO2 (gas) emissions. However, the mechanisms through which SO2(gas) reduction takes place has yet to be fully understood. Therefore, the development of oxy-sulfate thermodynamic database for a better understanding and control of SO2(gas) emission during oxy-fuel combustion processes is essential. The focus of this research is on the thermodynamic modelling of the iron oxide–sulfate system with the FactSage 7.2 software package. Thermodynamic properties of selected phases in the FeOx–FeSO4–Fe2(SO4)3 system were critically reviewed, compiled and assessed over a wide temperature range (298–2000 K) to obtain accurate thermodynamic description of the system at different temperatures. New Cp functions, which include the recent experimental data, were optimized. The obtained results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bale CW et al (2009) FactSage 7.2 thermochemical software and databases—recent developments. Calphad 33:295–311

    Article  CAS  Google Scholar 

  2. Hidayat T, Shishin D, Jak E, Decterov S (2015) Thermodynamic reevaluation of the Fe-O system. Calphad 48:131–144

    Article  CAS  Google Scholar 

  3. Walder P, Pelton AD (2005) Thermodynamic modeling of the Fe-S system. J Phase Equilib Diffus 26:23–38

    Article  Google Scholar 

  4. Shishin D, Jak E, Decterov SA (2015) Critical assessment and thermodynamic modeling of the Fe-O-S System. J Phase Equilib Diffus 36:224–240

    Article  CAS  Google Scholar 

  5. Barany R, Adami LH (1965) Heats of formation of anhydrous ferric sulfate and indium sulfate. US Bur Mines Rep Invest 6687:8

    Google Scholar 

  6. Pankratz LB, Weller WW (1969) Thermodynamic data for ferric sulfate and indium sulfate. US Bur Mines Rep Invest 7280:9

    Google Scholar 

  7. Majzlan J et al (2005) Thermodynamics of monoclinic Fe2(SO4)3. J Chem Thermodyn 37:802–809

    Article  CAS  Google Scholar 

  8. Moore GE, Kelley KK (1942) The specific heats at low temperatures of anhydrous sulfates of iron, magnesium, manganese, and potassium. J Am Chem Soc 64:2949–2951

    Article  CAS  Google Scholar 

  9. Frazer BC, Brow PJ (1962) Antiferromagnetic structure of CrVO4 and the anhydrous sulfates of divalent Fe, Ni, and Co. Phys Rev 125(4):1283–1291

    Article  CAS  Google Scholar 

  10. Kirfel A, Schafer W, Will G, Buschow KHJ (1977) The high-temperature polyrnorph β-FeSO4. Phys Stat Sol (a) 40:447

    Article  CAS  Google Scholar 

  11. Hemingway BS, Seal RR II, Chou I.-M (2002) Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals. US Geological Survey Open-File Report, 02–161

    Google Scholar 

  12. Thomsen J (1886) Thermochemische untersuchunger. Verlag von Johann Ambrosius Barth, Leipzig

    Google Scholar 

  13. Chase, MW (ed) (1998) NIST-JANAF thermochemical tables. J Phys Chem Ref Data, Monograph No. 9 Part II:959–1951

    Google Scholar 

  14. D’Ans J (1905) PhD. dissertation, Darmstadt, Data quoted by B. Neumann and G. Heintke, loc. Cit

    Google Scholar 

  15. Greulich E (1927) Z Anorg Chem 168:197–202

    Article  CAS  Google Scholar 

  16. Neumann B, Heintke G (1937) Z Elektrochem 43:246

    CAS  Google Scholar 

  17. Keppeler G, D’Ans J (1980) Z Phys Chem 62:89

    Google Scholar 

  18. Wöhler L, Plüddemann W, Wöhler P (1908) Eine neue Methode zur Tensionsbestimmung von Sulfaten. Ber Deut Chem Ges 41:703–717

    Article  Google Scholar 

  19. Bodenstein M, Suzuki T (1910) Z Elektrochem 16:912

    Google Scholar 

  20. Wöhler L, Grünzweig M (1913) Die Sulfat-Tensionen und die Affinität der seltenen Erden. Ber Deut Chem Ges 46:1726–1732

    Article  Google Scholar 

  21. Grunzweig M (1913) PhD dissertation, Darmstadt, Germany

    Google Scholar 

  22. Blanks RF (1961) PhD dissertation, University of Melbourne, Australia

    Google Scholar 

  23. Ingraham TR (1963) Internal Rept. EMT-63-17, Department of Mines and Technical Surveys, Ottawa, Canada

    Google Scholar 

  24. Kellogg HH (1964) Critical review of sulfation equilibria. Trans TMS-AIME 230:1622–1644

    CAS  Google Scholar 

  25. Knacke O, Kubaschewski O, Hesselman K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, Berlin, (KKH 91) pp. 1–1113

    Google Scholar 

  26. Southard JC, Shomate CH (1942) Heat of formation and high-temperature heat content of manganous oxide and manganous sulfate. High-temperature heat content of manganese. J Am Chem Soc 64(8):1770–1774

    Article  CAS  Google Scholar 

  27. Warner A, Ingraham TR (1960) Decomposition pressures of ferric sulphate and aluminum sulphate. Can J Chem 38:2196–2202

    Article  CAS  Google Scholar 

  28. Masset P, Poinso J-Y, Poignet J-C (2006) TG/DTA/MS Study of the thermal decomposition of FeSO4·6H2O. J Therm Anal Calorim 83:457–462

    Article  CAS  Google Scholar 

  29. Gallagher PK, Johnson DW, Schrey F (1970) Thermal decomposition of Iron(II) sulfates. J Am Ceram Soc 666–670. https://doi.org/10.1111/j.1151-2916.1970.tb12038.x. Accessed 26 July 2018

    Article  CAS  Google Scholar 

  30. Pannetier G, Bregeault JM, Djega-Maria-Dassou Gerald (1964) Thermal dissociation of ferrous sulfate heptahydrate. C R Acad Sci 258:2832–2835

    CAS  Google Scholar 

  31. Saflullin NS, Gitis EB, Panesenko NM (1968) Thermochemical transformations of FeSO4·7H2O during heating in oxidizing and inert media. Russ J Inorg Chem 13:1493

    Google Scholar 

  32. Skeaff JM, Espelund AW (1973) An E.M.F. method for the determination of sulphate-oxide equilibria results for the Mg, Mn, Fe, Ni, Cu and Zn systems. Can Metall Q 12:445–454

    Article  CAS  Google Scholar 

  33. Hsieh KC, Chang YA (1986) A Solid-State Emf Study of Ternary Ni-S-O, Fe-S-O, and Quaternary Fe-Ni-S-O. Metall Trans B 17:133–146

    Article  Google Scholar 

  34. Musbah OA, Chang YA (1988) A solid-state EMF study of the Fe-S-O and Co-S-O ternary systems. Oxid Met 30:329–343

    Article  CAS  Google Scholar 

  35. Kobe KA, JrEJ Couch (1954) Enthalpy-concentration diagram for system ferrous sulfate–water. Ind Eng Chem 46:377–381

    Article  CAS  Google Scholar 

  36. Rosenqvist T, Hofseth A (1980) Phase relations and thermodynamics of the copper-iron-sulfur-oxygen system at 700–1000 °C. Scand J Metall 9:129–138

    CAS  Google Scholar 

  37. Schaefer SC (1980) Electrochemical determination of gibbs energies of formation of manganese sulfide and iron sulfide (Fe0.9S), RI, 8486, Albany Researgh Center Bureau of Mines, Albany, OR

    Google Scholar 

  38. Espelund AW, Jynge H (1977) The zinc-iron-sulfur-oxygen system equilibriums between sphalerite or wurtzite, pyrrhotite, spinel, zinc oxide and a gas phase. Scand J Metall 6:256–262

    CAS  Google Scholar 

  39. Jacob KT, Iyengar GNK (1986) Thermodynamic study of Fe2O3-Fe2(SO4)3 equilibrium using an oxyanionic electrolyte (Na2SO4-I). Metall Trans B 17:323–329

    Article  Google Scholar 

  40. Alcock CB, Sudo K, Zador S (1965) The free energies of formation of the sulfates of cobalt, copper, nickel, and iron. Trans TMS-AIME 233:655–661

    CAS  Google Scholar 

  41. Tesfaye F et al (2014) Thermal stabilities and properties of equilibrium phases in the Pt-Te-O system. J Chem Thermodyn 106:47–58

    Article  Google Scholar 

  42. Barin I (1989) Thermochemical data of pure substances, Part II. VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New York

    Google Scholar 

  43. Sadakane K, Kawakami M, Goto KS (1977) Measurement of the standard free energy of formation of sulfides and sulfates using oxygen concentration cells with ZrO2·CaO. Tetsu-to-Hagané 63(3):432–440

    Article  CAS  Google Scholar 

  44. Turkdogan ET (ed) (1980) Physical chemistry of high temperature technology. Academic Press, New York

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Academy of Finland for financial support. This work was made under the project “Thermodynamic investigation of complex inorganic material systems for improved renewable energy and metals production processes” (Decision number 311537) as part of the activities of the Johan Gadolin Process Chemistry Center at Åbo Akademi University. This work is also a part of the project clean and efficient utilization of demanding fuels (CLUE), with support from the industrial partners: ANDRITZ, Fortum, International Paper, UPM-Kymmene Corporation, and Valmet Technologies Oy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiseha Tesfaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tesfaye, F., Jung, IH., Paek, MK., Moroz, M., Lindberg, D., Hupa, L. (2019). Thermochemical Data of Selected Phases in the FeOx–FeSO4–Fe2(SO4)3 System. In: Lambotte, G., Lee, J., Allanore, A., Wagstaff, S. (eds) Materials Processing Fundamentals 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05728-2_21

Download citation

Publish with us

Policies and ethics