Skip to main content
  • 782 Accesses

Abstract

Discrete Element Method (DEM) is a numerical method that considers the mutual interactions of discrete particles in contact and enables evaluations of mutual force interactions. This method requires equations of translation movement and equations of rotation movement for each particle. The basic model is solved using the linear visco-elasticity (Fig. 2.1). This calculation uses the parallel connection of the damper with spring (Voight model) as a substitution scheme for each contact, which incorporates rolling and shear friction. More complex calculations also use other inputs, e.g., plastic deformation. In these models, the components of normal forces are calculated according to the theory of Herz’s contacts [1]. In the kinetic Eq. (2.1), there are also the tangential forces that were defined by Mindlin [2] and Mindlin - Deresiewicz [3]. The basis of these frictional tangential forces is the Coulomb law of the friction model, which is explained in Cundall and Strack [4]. The equations also include the damper components of normal and tangential force for which the coefficient of damping relates to the coefficient of restitution. These parameters were explained in Tsuji, Tanaka, and Ishida [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hertz, H.: On the contact of elastic solids. J. reine und angewandte Mathematik. 92, 156–171 (1882)

    MATH  Google Scholar 

  2. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)

    MathSciNet  MATH  Google Scholar 

  3. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. Trans. ASME, J. Appl. Mech. 20, 327–344 (1953)

    Google Scholar 

  4. Cundall, P.A., Strack, O.D.: A discrete numberical model for granular assemblies. Geotechnique. 29, 47–65 (1979)

    Article  Google Scholar 

  5. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  6. Zegzulka, J.: Mechanics of Bulk Materials, 1st edn, p. 186. VĹ B - Technical University of Ostrava, Ostrava (2004). ISBN 80-248-0699-1

    Google Scholar 

  7. Gelnar, D., Zegzulka, J., Šooš, Ĺ., Nečas, J., Juchelková, D.: Validation device and method of measuring static and dynamic angle of discharge. VŠB - Technical University of Ostrava, patent number 306123 (2015)

    Google Scholar 

  8. Gelnar, D., Rozbroj, J., Zegzulka, J., NeÄŤas, J.: Measuring equipment of angle repose. VĹ B - Technical University of Ostrava, industrial design number 36213 (2013)

    Google Scholar 

  9. Gelnar, D., Zegzuka, J., Nečas, J., Juchelková, D.: Validation bucket elevator for modelling of mechanical processes and method of modelling of mechanical processes. VŠB - Technical University of Ostrava, patent number 304329 (2013)

    Google Scholar 

  10. Gelnar, D., Zegzulka, J., Nečas, J., Juchelková, D.: Validation bucket elevator for modelling of mechanical processes. VŠB - Technical University of Ostrava, utility model number 26154 (2013)

    Google Scholar 

  11. Gelnar, D., Zegzulka, J., Nečas, J., Juchelková, D.: Validation bucket elevator. VŠB - Technical University of Ostrava, industrial design number 35542 (2012)

    Google Scholar 

  12. Zegzulka, J., Bortlík, P., Dokoupil, O., Brázda, R., Nečas, J.: Method of simulating kinetics of movement of bulk material particles and device for making the same. VŠB - Technical University of Ostrava, patent number 303348 (2008)

    Google Scholar 

  13. Rozbroj, J., Zegzulka, J., NeÄŤas, J., Gelnar, D.: Validation vertical screw conveyor and method of modeling mechanical processes by making use thereof. VĹ B - Technical University of Ostrava, patent number 305150 (2013)

    Google Scholar 

  14. Gelnar, D., Zegzulka, J., Nečas, J., Juchelková, D.: Method of modeling mechanical processes of bulk materials and device for making the same. VŠB - Technical University of Ostrava, patent number 305194 (2013)

    Google Scholar 

  15. Gelnar, D., Zegzulka, J., Nečas, J., Juchelková, D.: Device for modeling mechanical processes of bulk materials VŠB - Technical University of Ostrava, utility model number 27421 (2014)

    Google Scholar 

  16. Gelnar, D., Zegzulka, J., Nečas, J., Juchelková, D.: Validation vibration conveyor. VŠB - Technical University of Ostrava, industrial design number 35809 (2012)

    Google Scholar 

  17. Žídek, M., Zegzulka, J., Nečas, J., Juchelková, D.: Validation chain conveyor with drivers and method of modeling mechanical processes by making use thereof. VŠB - Technical University of Ostrava, patent number 305136 (2013)

    Google Scholar 

  18. Žurovec, D., Gelnar, D., Zegzulka, J., Nečas, J.: Validation storage device for measuring flow processes of bulk material using electrical capacitance tomography method. VŠB - Technical University of Ostrava, patent number 306017 (2014)

    Google Scholar 

  19. Žurovec, D., Gelnar, D., Zegzulka, J., Nečas, J.: Validation storage device for measuring flow processes by tomographic method. VŠB - Technical University of Ostrava, utility model number 28424 (2015)

    Google Scholar 

  20. Žídek, M., Rozbroj, J., Zegzulka, J., Nečas, J., Marschalko, M.: A validation system of traction and pressing tools. VŠB - Technical University of Ostrava, patent number 306578 (2015)

    Google Scholar 

  21. Žídek, M., Rozbroj, J., Zegzulka, J., Nečas, J., Marschalko, M.: Validation bucket elevator for modelling of mechanical processes. VŠB - Technical University of Ostrava, utility model number 28181 (2015)

    Google Scholar 

  22. Rozbroj, J., Zegzulka, J., NeÄŤas, J., Gelnar, D.: Validation vertical screw conveyor. VĹ B - Technical University of Ostrava, utility model number 28349 (2015)

    Google Scholar 

  23. Hlosta, J., Žurovec, D., Zádrapa, F., Zegzulka, J.: Device for measuring the aeration properties of powders and loose materials with a cylindrical chamber. VŠB - Technical University of Ostrava, industrial design number 40388 (2015)

    Google Scholar 

  24. Forsström, D., Pär, J.: Calibration and validation of a large scale abrasive wear model by coupling DEM-FEM: local failure prediction from abrasive wear of tipper bodies during unloading of granular material. Eng. Fail. Anal. 66, 274–283 (2016)

    Article  Google Scholar 

  25. Hendrik, O., Kerst, K., Roloff, C., Janiga, G., Katterfeld, A.: CFD-DEM simulation and experimental investigation of the flow behavior of lunar regolith JSC-1A. Particuology. (2018). in press

    Google Scholar 

  26. Barrios, G.K., Tavares, L.M.: A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling. Int. J. Miner. Process. 156, 32–42 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gelnar, D., Zegzulka, J. (2019). Basic Description of DEM. In: Discrete Element Method in the Design of Transport Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-05713-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05713-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05712-1

  • Online ISBN: 978-3-030-05713-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics