Skip to main content

Preferred Model of Adaptation to Dark for Virtual Reality Headsets

  • Conference paper
  • First Online:
Book cover MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11295))

Included in the following conference series:

  • 2610 Accesses

Abstract

The human visual system has the ability to adapt to various lighting conditions. In this work, we simulate the dark adaptation process using a custom virtual reality framework. The high dynamic range (HDR) image is rendered, tone mapped and displayed in the head-mounted-display (HMD) equipped with the eye tracker. Observer’s adaptation state is predicted by analysing the HDR image in the surrounding of his/her gaze point. This state is applied during tone mapping to simulate how an observer would see the whole scene being adapted to an arbitrary luminance level. We take into account the spatial extent of the visual adaptation, loss of colour vision, and time course of adaptation. Our main goal is to mimic the adaptation process naturally implemented by the human visual system. However, we prove in the psychophysical experiments that people prefer shorter adaptation while watching a virtual environment. We also justify that a complex perceptual model of adaptation to dark can be replaced with simpler linear formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer, S.E.: Vision Science: Photons to Phenomenology, vol. 1. MIT press, Cambridge (1999)

    Google Scholar 

  2. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd edn. Morgan Kaufmann, Amsterdam (2010)

    Google Scholar 

  3. Davson, H.: Physiology of the Eye. Elsevier, Amsterdam (2012)

    Google Scholar 

  4. Graham, C.H.: Vision and Visual Perception. Wiley, Hoboken (1965)

    Google Scholar 

  5. Vangorp, P., Myszkowski, K., Graf, E.W., Mantiuk, R.K.: A model of local adaptation. ACM Trans. Graph. 34, 166:1–166:13 (2015). Proceedings of ACM SIGGRAPH Asia

    Article  Google Scholar 

  6. Mantiuk, R., Markowski, M.: Gaze-dependent tone mapping. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 426–433. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39094-4_48

    Chapter  Google Scholar 

  7. Ward, G.: A contrast-based scalefactor for luminance display. In: Graphics Gems IV, pp. 415–421 (1994)

    Chapter  Google Scholar 

  8. Ferwerda, J.A., Pattanaik, S.N., Shirley, P., Greenberg, D.P.: A model of visual adaptation for realistic image synthesis. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–258. ACM (1996)

    Google Scholar 

  9. Hunt, R.W.G.: The Reproduction of Colour. Wiley, Hoboken (2005)

    Google Scholar 

  10. Krawczyk, G., Myszkowski, K., Seidel, H.: Perceptual effects in real-time tone mapping. In: Proceedings of the 21st Spring Conference on Computer Graphics, Budmerice, Slovakia, pp. 195–202 (2005)

    Google Scholar 

  11. Peli, E., Yang, J., Goldstein, R.B.: Image invariance with changes in size: the role of peripheral contrast thresholds. JOSA A 8, 1762–1774 (1991)

    Article  Google Scholar 

  12. Mantiuk, R., Janus, S.: Gaze-dependent ambient occlusion. In: Bebis, G., et al. (eds.) ISVC 2012. LNCS, vol. 7431, pp. 523–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33179-4_50

    Chapter  Google Scholar 

  13. Loschky, L., McConkie, G., Yang, J., Miller, M.: The limits of visual resolution in natural scene viewing. Vis. Cogn. 12, 1057–1092 (2005)

    Article  Google Scholar 

  14. Hecht, S.: Vision: II. The Nature of the Photoreceptor Process, Clark University Press, USA (1934)

    Google Scholar 

  15. Woodworth, R.S., Schlosberg, H., Kling, J.W., Riggs, L.A.: Woodworth & Schlosberg’s Experimental Psychology, 3rd edn. Holt, Rinehart and Winston, Houghton (1971)

    Google Scholar 

  16. Mantiuk, R.K., Tomaszewska, A., Mantiuk, R.: Comparison of four subjective methods for image quality assessment. Comput. Graph. Forum 31, 2478–2491 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Mantiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wernikowski, M., Mantiuk, R., Piórkowski, R. (2019). Preferred Model of Adaptation to Dark for Virtual Reality Headsets. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05710-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05709-1

  • Online ISBN: 978-3-030-05710-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics