Skip to main content

Abstract

Our aim in this work is to give some quantitative insight on the dispersive effects exhibited by solutions of a semiclassical Schrödinger-type equation in \(\mathbf{R}^d\). We describe quantitatively the localisation of the energy in a long-time semiclassical limit within this non compact geometry and exhibit conditions under which the energy remains localized on compact sets. We also explain how our results can be applied in a straightforward way to describe obstructions to the validity of smoothing type estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Think for instance of \(\lambda (\xi ) = \Vert \xi \Vert ^2\), for which (2) corresponds to the standard, non-semiclassical, Schrödinger equation, one of the most studied dispersive equations.

References

  1. Anantharaman, N., Macià, F.: Semiclassical measures for the Schrödinger equation on the torus. J. Eur. Math. Soc. (JEMS) 16(6), 1253–1288 (2014)

    Article  MathSciNet  Google Scholar 

  2. Anantharaman, N., Fermanian-Kammerer, C., Macià, F.: Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures. Am. J. Math. 137(3), 577–638 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ben-Artzi, M., Devinatz, A.: Local smoothing and convergence properties of Schrödinger type equations. J. Funct. Anal. 101(2), 231–254 (1991)

    Article  MathSciNet  Google Scholar 

  4. Chabu, V.: Semiclassical analysis of the Schrödinger equation with irregular potentials. Ph.D. thesis, Université Paris-Est, Créteil (2016)

    Google Scholar 

  5. Chabu, V., Fermanian-Kammerer, C., Macià, F.: Wigner measures and effective mass theorems. Preprint arXiv:1803.07319 (2018)

  6. Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1(2), 413–439 (1988)

    Article  MathSciNet  Google Scholar 

  7. Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semiclassical limit. London Mathematical Society Lecture Note Series, vol. 268. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Fermanian-Kammerer, C.: Équation de la chaleur et Mesures semi-classiques. Ph.D. thesis, Université Paris-Sud, Orsay (1995)

    Google Scholar 

  9. Fermanian-Kammerer, C.: Analyse à deux échelles d’une suite bornée de \(L^2\) sur une sous-variété du cotangent. C. R. Acad. Sci. Paris Sér. I Math. 340(4), 269–274 (2005)

    Google Scholar 

  10. Fermanian-Kammerer, C., Gérard, P.: Mesures semi-classiques et croisement de modes. Bull. Soc. Math. Fr. 130(1), 123–168 (2002)

    Article  MathSciNet  Google Scholar 

  11. Folland, G.B.: Harmonic analysis in phase space. Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton, NJ (1989)

    Google Scholar 

  12. Gérard, P.: Mesures semi-classiques et ondes de Bloch. In: Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, Exp. No. XVI, pp. 1–9. École Polytech, Palaiseau (1991)

    Google Scholar 

  13. Gérard, P., Leichtnam, É.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71(2), 559–607 (1993)

    Article  MathSciNet  Google Scholar 

  14. Gérard, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50(4), 323–379 (1997)

    Article  MathSciNet  Google Scholar 

  15. Hoshiro, T.: Decay and regularity for dispersive equations with constant coefficients. J. Anal. Math. 91, 211–230 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in Applied Mathematics. Adv. Math. Suppl. Stud., vol. 8, pp. 93–128. Academic Press, New York (1983)

    Google Scholar 

  17. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40(1), 33–69 (1991)

    Article  MathSciNet  Google Scholar 

  18. Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9(3), 553–618 (1993)

    Article  MathSciNet  Google Scholar 

  19. Macià, F.: Semiclassical measures and the Schrödinger flow on Riemannian manifolds. Nonlinearity 22(5), 1003–1020 (2009)

    Article  MathSciNet  Google Scholar 

  20. Macià, F.: High-frequency propagation for the Schrödinger equation on the torus. J. Funct. Anal. 258(3), 933–955 (2010)

    Article  MathSciNet  Google Scholar 

  21. Miller, L.: Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales. Ph.D. thesis, École Polythecnique, Palaiseau (1996)

    Google Scholar 

  22. Nier, F.: A semiclassical picture of quantum scattering. Ann. Sci. École Norm. Sup. (4) 29(2), 149–183 (1996)

    Article  MathSciNet  Google Scholar 

  23. Ruzhansky, M., Sugimoto, M.: Smoothing estimates for non-dispersive equations. Math. Ann. 365, 241–269 (2016)

    Article  MathSciNet  Google Scholar 

  24. Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  Google Scholar 

  25. Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MATH  Google Scholar 

  26. Zworski, M.: Semiclassical analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence, RI (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

F. Macià has been supported by grants StG-2777778 (U.E.) and MTM2013-41780-P, TRA2013-41096-P (MINECO, Spain). Part of this work was done while V. Chabu was visiting ETSI Navales at Universidad Politécnica de Madrid in the fall of 2015. V. Chabu was partly supported by grant 2017/13865-0, São Paulo Research Foundation (FAPESP)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clotilde Fermanian-Kammerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chabu, V., Fermanian-Kammerer, C., Macià, F. (2019). Semiclassical Analysis of Dispersion Phenomena. In: Delgado, J., Ruzhansky, M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries. Springer Proceedings in Mathematics & Statistics, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-030-05657-5_7

Download citation

Publish with us

Policies and ethics