Skip to main content

Abstract

We study multipliers associated to the Hermite operator \(H=-\varDelta + |x|^2\) on modulation spaces \(M^{p,q}(\mathbb R^d)\). We prove that the operator m(H) is bounded on \(M^{p,q}(\mathbb R^d)\) under standard conditions on m,  for suitable choice of p and q. As an application, we point out that the solutions to the free wave and Schrödinger equations associated to H with initial data in a modulation space will remain in the same modulation space for all times. We also point out that Riesz transforms associated to H are bounded on some modulation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bényi, A., Gröchenig, K., Okoudjou, K.A., Rogers, L.G.: Unimodular fourier multipliers for modulation spaces. J. Funct. Anal. 246(2), 366–384 (2007)

    Article  MathSciNet  Google Scholar 

  2. Cordero, E., Nicola, F.: Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal. 254(2), 506–534 (2008)

    Article  MathSciNet  Google Scholar 

  3. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups, Technical Report, University of Vienna (1983)

    Google Scholar 

  4. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser Boston Inc., Boston, MA (2001)

    Book  Google Scholar 

  5. Jao, C.: The energy-critical quantum harmonic oscillator. Commun. Partial Differ. Equ. 41(1), 79–133 (2016)

    Article  MathSciNet  Google Scholar 

  6. Hebisch, W.: Multiplier theorem on generalized Heisenberg groups. Colloq. Math. 65(2), 231–239 (1993)

    Article  MathSciNet  Google Scholar 

  7. Hebisch, W., Zienkiewicz, J.: Multiplier theorem on generalized Heisenberg groups. II. Colloq. Math. 69(1), 29–36 (1995)

    Article  MathSciNet  Google Scholar 

  8. Kato, K., Kobayashi, M., Ito, S.: Remarks on Wiener Amalgam Space Type Estimates for Schrödinger Equation, Harmonic Analysis and Nonlinear Partial Differential Equations, pp. 41–48. RIMS Kokyuroku Bessatsu, B33, Res. Inst. Math. Sci. (RIMS ), Kyoto (2012)

    Google Scholar 

  9. Herz, C., Rivière, N.: Estimates for translation invariant operators on spaces with mixed norms. Studia Math. 44, 511–515 (1972)

    Article  MathSciNet  Google Scholar 

  10. Müller, D., Ricci, F., Stein, E.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II. Math. Z. 221(2), 267–291 (1996)

    Google Scholar 

  11. Müller, D., Stein, E.M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. 73(4), 413–440 (1994)

    Google Scholar 

  12. Ruzhansky, M., Sugimoto, M., Wang, B.: Modulation spaces and nonlinear evolution equations. In: Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol. 301, pp. 267–283. Birkhäuser/Springer Basel AG, Basel (2012)

    Chapter  Google Scholar 

  13. Sanjay, P.K., Thangavelu, S.: Revisiting Riesz transforms on Heisenberg groups. Rev. Mat. Iberoam. 28(4), 1091–1108 (2012)

    Article  MathSciNet  Google Scholar 

  14. Schonbek, T.P.: \(L^p-\)multipliers: a new proof of an old theorem. Proc. Am. Math. Soc. 102(2), 361–364 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Mathematical Notes, vol. 42. Princeton University Press, Princeton (1993)

    Google Scholar 

  16. Thangavelu, S.: An Introduction to the Uncertainty Principle. Hardy’s theorem on Lie groups. Progress in Mathematics, vol. 217, Birkhäuser., Boston, MA (2004)

    Chapter  Google Scholar 

  17. Thangavelu, S.: Harmonic Analysis on the Heisenberg Group. Progress in Mathematics, vol. 159. Birkhäuser, Boston, MA (1998)

    Chapter  Google Scholar 

  18. Thangavelu, S.: Multipliers for Hermite expansions. Rev. Mat. Iberoam. 3(1), 1–24 (1987)

    Article  MathSciNet  Google Scholar 

  19. Wang, B.X., Zhao, L., Guo, B.: Isometric decomposition operators, function spaces \(E_{p, q}^{\lambda }\) and applications to nonlinear evolution equations. J. Funct. Anal. 233(1), 1–39 (2006)

    Article  MathSciNet  Google Scholar 

  20. Wang, B.X., Zhaohui, H., Chengchun, H., Zihua, G.: Harmonic Analysis Method for Nonlinear Evolution Equations I. World Scientific Publishing Co., Pte. Lt (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Thangavelu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhimani, D.G., Balhara, R., Thangavelu, S. (2019). Hermite Multipliers on Modulation Spaces. In: Delgado, J., Ruzhansky, M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries. Springer Proceedings in Mathematics & Statistics, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-030-05657-5_5

Download citation

Publish with us

Policies and ethics