Skip to main content

Comparison of Genetic and Incremental Learning Methods for Neural Network-Based Electrical Machine Fault Detection

  • Chapter
  • First Online:
Predictive Maintenance in Dynamic Systems

Abstract

Learning of neural network structure and parameters using genetic and incremental heuristic algorithms are potential approaches to address the local optima and design issues experienced when using conventional deterministic algorithms and arbitrarily chosen network structures. This chapter presents results on the development of an evolutionary (EANN) and an evolving fuzzy granular (EGNN) neural network for detecting and classifying inter-turns short-circuit in the stator windings of induction motors. A condition monitoring system based on features extracted from voltage and current waveforms associated with a type of neural network is proposed. Both EANN and EGNN are able to develop their parameters and structure according to data samples and a fitness function or error index. Real-programming-based genetic operators, i.e., mutation, recombination, and selection operators, were customized to address the fault detection problem in question. Operators and rates were evaluated in order to obtain a consistent and effective EANN learning algorithm. EGNN handles gradual and abrupt changes typical of nonstationary environment using fuzzy granules and fuzzy aggregation operators. While EGNN is online adaptive, EANN requires a set of initial data. Such initial dataset for training offline neural networks was obtained from a modified induction motor properly designed for insertion of stator shorted-turns and from a fault simulation model useful to extend the dataset by interpolation. Aspects of the neural models, such as classification performance, computational complexity, and compactness, are compared with each other and with the results obtained using a conventional feedforward neural network of similar structure, but trained by a deterministic gradient descent algorithm. The EGNN classifier achieved the best performance on shorted-turn fault detection considering a real dynamic environment subject to voltage unbalance, load variation, and measurement noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, Z., Cecati, C., Ding, S.: A survey of fault diagnosis and fault-tolerant techniques - part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Google Scholar 

  2. Nandi, S., Toliyat, A.: Condition monitoring and fault diagnosis of electrical motors - a review. IEEE Trans. Energy Convers. 20(4), 719–729 (2005)

    Google Scholar 

  3. Bessa, I., Palhares, R., D’Angelo, M.F., Filho, J.E.: Data-driven fault detection and isolation scheme for a wind turbine benchmark. Renew Energy 87(1), 634–645 (2016)

    Google Scholar 

  4. D’Angelo, M.F., Palhares, R. Cosme, L., Aguiar, L., Fonseca, F., Caminhas, W.: Fault detection in dynamic systems by a Fuzzy/Bayesian network formulation. Appl. Soft Comput. 21, 647–653 (2014)

    Google Scholar 

  5. Frosini, L., Harlişca, C., Szabó, L.: Induction machine bearing fault detection by means of statistical processing of the stray flux measurement. IEEE Trans. Ind. Electron. 62(3), 1846–1854 (2015)

    Google Scholar 

  6. Chang, H.-C., Lin, S.-C., Kuo, C.-C., Hsieh, C.-F.: Induction motor diagnostic system based on electrical detection method and fuzzy algorithm. Int. J. Fuzzy Syst. 18(5), 732–740 (2016)

    Google Scholar 

  7. Leite, D., Hell, M., Costa Jr., P., Gomide, F.: Real-time fault diagnosis of nonlinear systems. Nonlinear Anal. Theory Methods Appl. 71(12), 2665–2673 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Ghate, V., Dudul, S.: Cascade neural-network-based fault classifier for three-phase induction motor. IEEE Trans. Ind. Electron. 58(5), 1555–1563 (2011)

    Google Scholar 

  9. Fuente, M., Moya, E., Alvarez, C., Sainz, G.: Fault detection and isolation based on hybrid modelling in an AC motor. IEEE Int. Conf. Neural Netw. 3, 1869–1874 (2004)

    Google Scholar 

  10. Gandhi, A., Corrigan, T., Parsa, L.: Recent advances in modeling and online detection of stator interturn faults in electrical motors. IEEE Trans. Ind. Electron. 58(5), 1564–1575 (2011)

    Google Scholar 

  11. Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X.: A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89, 171–178 (2016)

    Google Scholar 

  12. Chow, M.-Y.: Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection. World Scientific Publishing Co. Pte. Ltd., Singapore (1998)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  14. Rumelhart, D., Hinton, G., Willians, R.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  15. Chen, O., Sheu, B.: Optimization schemes for neural network training. IEEE Int. Conf. Neural Netw. 2, 817–822 (1994)

    Google Scholar 

  16. Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. Appl. Math. Comput. 91(1), 83–90 (1998)

    MATH  Google Scholar 

  17. Sexton, R., Gupta, J.: Comparative evaluation of genetic algorithm and backpropagation for training neural networks. Inf. Sci. 129(1–4), 45–59 (2000)

    MATH  Google Scholar 

  18. Huang, H.-X., Li, J.-C., Xiao, C.-L.: A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm. Expert Syst. Appl. 42, 146–155 (2015)

    Google Scholar 

  19. Chen, X., Chau, K., Busari, A.: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model. Eng. Appl. Artif. Intell. 46(A), 258–268 (2015)

    Google Scholar 

  20. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization: an application to pattern classification. In: International Conference on Hybrid Intelligent Systems, 6p (2005)

    Google Scholar 

  21. Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

    Google Scholar 

  22. Taormina, R., Chau, K.-W.: Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinformatics 17(1), 99–113 (2015)

    Google Scholar 

  23. Ren, C., An, N., Wang, J., Li, L., Hu, B., Shang, D.: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl.-Based Syst. 56, 226–239 (2014)

    Google Scholar 

  24. Leite, D., Costa, P., Gomide, F.: Evolving granular neural networks from fuzzy data streams. Neural Netw. 38, 1–16 (2013)

    MATH  Google Scholar 

  25. Lughofer, E., Pratama, M.: Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models. IEEE Trans. Fuzzy Syst. 26(1), 292–309 (2018)

    Google Scholar 

  26. Rubio, J.J.: USNFIS: uniform stable neuro fuzzy inference system. Neurocomputing 262(1), 57–66 (2017)

    Google Scholar 

  27. Silva, A., Caminhas, W., Lemos, A., Gomide, F.: A fast learning algorithm for evolving neo-fuzzy neuron. Appl. Soft Comput. 14(B), 194–209 (2014)

    Google Scholar 

  28. Mohamad, S., Moamar, S.-M., Bouchachia, A.: Active learning for classifying data streams with unknown number of classes. Neural Netw. 98, 1–15 (2018)

    Google Scholar 

  29. Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol. Syst. 3(2), 65–79 (2012)

    Google Scholar 

  30. Mirzamomen, Z., Kangavari, M.: Evolving fuzzy min-max neural network based decision trees for data stream classification. Neural Process. Lett. 45(1), 341–363 (2017)

    Google Scholar 

  31. Soares, E., Costa, P., Costa, B., Leite, D.: Ensemble of evolving data clouds and fuzzy models for weather time series prediction. Appl. Soft Comput. 64, 445–453 (2018)

    Google Scholar 

  32. Andonovski, G., Music, G., Blazic, S., Skrjanc, I.: Evolving model identification for process monitoring and prediction of non-linear systems. Eng. Appl. Artif. Intell. 68, 214–221 (2018)

    Google Scholar 

  33. Lopes, P.A., Camargo, H.A.: FuzzStream: fuzzy data stream clustering based on the online-offline framework. In: IEEE International Conference on Fuzzy Systems (2017)

    Google Scholar 

  34. Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)

    MATH  Google Scholar 

  35. Bezerra, C., Costa, B., Guedes, L., Angelov, P.: An evolving approach to unsupervised and real-time fault detection in industrial processes. Expert Syst. Appl. 63(30), 134–144 (2016)

    Google Scholar 

  36. Leite, D., Costa, P., Gomide, F.: Evolving granular neural network for semi-supervised data stream classification. In: International Joint Conference on Neural Networks, 8p (2010)

    Google Scholar 

  37. Silva, S., Costa, P., Gouvea, M., Lacerda, A., Alves, F., Leite, D.: High impedance fault detection in power distribution systems using wavelet transform and evolving neural network. Electr. Power Syst. Res. 154, 474–483 (2018)

    Google Scholar 

  38. Leite, D., Hell, M., Diez, P., Gariglio, B., Nascimento L., Costa P.: Real-time model-based fault detection and diagnosis for alternators and induction motors. In: IEEE International Electric Machines & Drives Conference, 6p. (2007)

    Google Scholar 

  39. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    Google Scholar 

  40. Krause, P., Wasynczuk, O., Sudhoff, S.: Analysis of Electric Machinery. IEEE Press, New York (1995)

    Google Scholar 

  41. Chen, S., Wu, Y., Luk, L.: Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Trans. Neural Netw. 10(5), 1239–1243 (1999)

    Google Scholar 

  42. Brown, A., Card, H.: Cooperative coevolution of neural representations. Int. J. Neural Syst. 10(4), 311–320 (2000)

    MATH  Google Scholar 

  43. Ahmadizar, F., Soltanian, K., Tab, F., Tsoulos, I.: Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm. Eng. Appl. Artif. Intell. 39, 1–13 (2015)

    Google Scholar 

  44. Fogel, D.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd edn. Wiley-Blackwell, Hoboken (2006)

    Google Scholar 

  45. Kaya, M.: The effects of two new crossover operators on genetic algorithm performance. Appl. Soft Comput. 11(1), 881–890 (2011)

    Google Scholar 

  46. Miller, B., Goldberg, D.: Genetic algorithms, tournament selection, and the effects of noise. Complex Syst. 9, 193–212 (1995)

    MathSciNet  Google Scholar 

  47. Leite, D., Santana, M., Borges, A., Gomide, F.: Fuzzy granular neural network for incremental modeling of nonlinear chaotic systems. In: IEEE International Conference on Fuzzy Systems, pp. 64–71 (2016)

    Google Scholar 

  48. Leite, D., Palhares, R., Campos, V., Gomide, F.: Evolving granular fuzzy model-based control of nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 23(4), 923–938 (2015)

    Google Scholar 

  49. Kangin, D., Angelov, P., Iglesias, J.A.: Autonomously evolving classifier TEDAClass. Inf. Sci. 366, 1–11 (2016)

    MathSciNet  Google Scholar 

  50. Lughofer, E.: FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)

    Google Scholar 

  51. Shaker, A., Lughofer, E.: Self-adaptive and local strategies for a smooth treatment of drifts in data streams. Evol. Syst. 5(4), 239–257 (2014)

    Google Scholar 

  52. Gu, X., Angelov, P.: Self-organising fuzzy logic classifier. Inf. Sci. 446, 36–51 (2018)

    Google Scholar 

  53. Mirza, B., Lin, Z., Liu, N.: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149, 315–329 (2015)

    Google Scholar 

  54. Pratama, M., Lu, J., Lughofer, E., Zhang, G., Anavatti, S.: Scaffolding type-2 classifier for incremental learning under concept drifts. Neurocomputing 191, 304–329 (2016)

    Google Scholar 

  55. Kim, Y., Park, C.H.: An efficient concept drift detection method for streaming data under limited labeling. IEEE Trans. Inf. Syst. E100(10), 2537–2546 (2017)

    Google Scholar 

  56. Leite, D., Costa, P., Gomide, F.: Granular approach for evolving system modeling. In: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 340–349. Springer, Berlin (2010)

    Google Scholar 

  57. Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines. Evol. Syst. 6(2), 115–129 (2015)

    Google Scholar 

  58. Dovzan, D., Logar, V., Skrjanc, I.: Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. 23(5), 1761–1776 (2015)

    Google Scholar 

  59. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley/IEEE Press, Hoboken (2007)

    Google Scholar 

  60. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer - Studies in Fuzziness and Soft Computing Series, vol. 221 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leite, D. (2019). Comparison of Genetic and Incremental Learning Methods for Neural Network-Based Electrical Machine Fault Detection. In: Lughofer, E., Sayed-Mouchaweh, M. (eds) Predictive Maintenance in Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-05645-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05645-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05644-5

  • Online ISBN: 978-3-030-05645-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics