Skip to main content

A New Hilbert-Huang Transform Technique for Fault Detection in Rolling Element Bearings

  • Chapter
  • First Online:
Predictive Maintenance in Dynamic Systems

Abstract

Rotary machinery is commonly used in various industries. Most rotating machinery imperfections are related to defects in rolling element bearings. Unfortunately, reliable bearing fault detection still remains a challenging task, especially when bearing defect is at its initial stages, and the defect-related features are nonstationary. A new enhanced Hilbert–Huang transform (HHT) technique, eHT, is proposed in this chapter for incipient bearing fault detection. In the proposed eHT technique, the vibration signal is firstly denoised to reduce impedance effect of the measured vibration signal and enhance signal-to-noise ratio. Then, a morphological filter is proposed using a linearity measure method to demodulate characteristic features from the HHT, and to improve fault detection accuracy. The effectiveness of the proposed eHT technique is verified analytically and experimentally by a series of tests corresponding to different bearing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hashemian, H.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 60(1), 226–236 (2011)

    Article  MathSciNet  Google Scholar 

  2. Donnell, P., Heising, C., Singh, C., Wells, S.: Report of large motor reliability survey of industrial and commercial installations. IEEE Trans. Ind. Appl. 23(1), 153–158 (1987)

    Google Scholar 

  3. Wang, W., Lee, H.: An energy kurtosis demodulation technique for signal denoising and bearing fault detection. Meas. Sci. Technol. 24(2), 025601 (2013)

    Article  Google Scholar 

  4. Randall, R.B., Antoni, J.: Rolling element bearing diagnostics—a tutorial. Mech. Syst. Signal Process. 25(2), 485–520 (2011)

    Article  Google Scholar 

  5. Mohanty, S., Gupta, K.K., Raju, K.S.: Adaptive fault identification of bearing using empirical mode decomposition–principal component analysis-based average kurtosis technique. IET Sci. Meas. Technol. 11(1), 30–40 (2017)

    Article  Google Scholar 

  6. Borghesani, P., Pennacchi, P., Chatterton, S.: The relationship between kurtosis and envelope-based indexes for the diagnostic of rolling element bearings. Mech. Syst. Signal Process. 43(1–2), 25–43 (2014)

    Article  Google Scholar 

  7. Borghesani, P., Pennacchi, P., Randall, R.B., Sawalhi, N., Ricci, R.: Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech. Syst. Signal Process. 36(2), 370–384 (2013)

    Article  Google Scholar 

  8. Cocconcelli, M., Zimroz, R., Rubini, R., Bartelmus, W.: Kurtosis over energy distribution approach for STFT enhancement in ball bearing diagnostics. In: Condition Monitoring of Machinery in Non-Stationary Operations, pp. 51–59. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Gao, H., Liang, L., Chen, X., Xu, G.: Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization. Chin. J. Mech. Eng. 28(1), 96–105 (2014)

    Article  Google Scholar 

  10. Rai, A., Upadhyay, S.H.: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol. Int. 1(96), 289–306 (2016)

    Article  Google Scholar 

  11. Li, H., Zheng, H., Tang, L.: Wigner-Ville distribution based on EMD for faults diagnosis of bearing. In International Conference on Fuzzy Systems and Knowledge Discovery, 803–812. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  12. Mishra, C., Samantaray, A.K., Chakraborty, G.: Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising. Measurement. 1(103), 77–86 (2017)

    Article  Google Scholar 

  13. Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 1(96), 1–5 (2014)

    Article  Google Scholar 

  14. Elbouchikhi, E., Choqueuse, V., Amirat, Y., Benbouzid, M.E., Turri, S.: An efficient Hilbert–Huang transform-based bearing faults detection in induction machines. IEEE Trans. Energy Conv. 32(2), 401–413 (2017)

    Article  Google Scholar 

  15. Soualhi, A., Kamal, M., Noureddine, Z.: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression. IEEE Trans. Instrum. Meas. 64(1), 52–62 (2015)

    Article  Google Scholar 

  16. Li, H., Zhang, Y., Zheng, H.: Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearings. J. Mech. Sci. Technol. 23, 291–301 (2009)

    Article  Google Scholar 

  17. Tsao, W.C., Li, Y.F., Le, D.D., Pan, M.C.: An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis. Measurement. 45(6), 1489–1498 (2012)

    Article  Google Scholar 

  18. Yan, J., Lu, L.: Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis. Signal Process. 98, 74–87 (2014)

    Article  Google Scholar 

  19. Osman, S., Wang, W.: A normalized Hilbert-Huang transform technique for bearing fault detection. J. Vib. Control. 22(11), 2771–2787 (2016)

    Article  Google Scholar 

  20. Osman, S., Wang, W.: An enhanced Hilbert-Huang transform technique for bearing condition monitoring. Meas. Sci. Technol. 24(8), 1–13 (2013)

    Article  Google Scholar 

  21. Li, Y., Zuo, M.J., Lin, J., Liu, J.: Fault detection method for railway wheel flat using an adaptive multiscale morphological filter. Mech. Syst. Signal Process. 1(84), 642–658 (2017)

    Article  Google Scholar 

  22. Huang, H., Ziwei, P.: A new bearing fault diagnosis method based on MM and EMD. In: IEEE Image Signal Process (CISP), 2010 3rd International Congress, vol. 8, pp. 3975–3979 (2010)

    Google Scholar 

  23. Zhang, P., Li, B., Mi, S., Zhang, Y., Liu, D.: Bearing fault detection using multi-scale fractal dimensions based on morphological covers. Shock. Vib. 19, 1373–1383 (2011)

    Article  Google Scholar 

  24. Wang, D., Tse, P.W., Tse, Y.L.: A morphogram with the optimal selection of parameters used in morphological analysis for enhancing the ability in bearing fault diagnosis. Meas. Sci. Technol. 23(6), 1–15 (2012)

    Google Scholar 

  25. Chen, Q., Chen, Z., Sun, W., Yang, G., Palazoglu, A., Ren, Z.: A new structuring element for multi-scale morphology analysis and its application in rolling element bearing fault diagnosis. J. Vib. Control. 21(4), 1–25 (2015)

    Article  Google Scholar 

  26. He, D., Wang, X., Li, S., Lin, J., Zhao, M.: Identification of multiple faults in rotating machinery based on minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 1(84), 642–658 (2017)

    Google Scholar 

  27. Cheng, Y., Zhou, N., Zhang, W., Wang, Z.: Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis. J. Sound Vib. 7(425), 53–69 (2018)

    Article  Google Scholar 

  28. Endo, H., Randall, R.B.: Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter. Mech. Syst. Signal Process. 21(2), 906–919 (2007)

    Article  Google Scholar 

  29. Sawalhi, N., Randall, R.B., Endo, H.: The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 1(84), 642–658 (2017)

    Google Scholar 

  30. Maragos, P., Schafer, W.: Morphological filters—part 1: their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1153–1169 (1987)

    Article  MathSciNet  Google Scholar 

  31. Chen, Q., Chen, Z., Sun, W., Yang, G., Palazoglu, A., Ren, Z.: A new structuring element for multi-scale morphology analysis and its application in rolling element bearing fault diagnosis. J. Vib. Control. 21(4), 765–789 (2015)

    Article  Google Scholar 

  32. Zhang, L., Xu, J., Yang, J., Yang, D., Wang, D.: Multiscale morphology analysis and its application to fault diagnosis. Mech. Syst. Signal Process. 22(3), 597–610 (2008)

    Article  Google Scholar 

  33. Murali, N.: Early classification of bearing faults using morphological operators and Fuzzy inference. IEEE Trans. Ind. Electron. 60(2), 567–574 (2013)

    Article  Google Scholar 

  34. Maszczyk, T., Włodzisław, D.: Comparison of Shannon, Renyi and Tsallis entropy used in decision trees. In: A.I. Soft Comp.–ICAISC 2008, vol. 5097, pp. 643–651, Springer, Berlin (2008)

    Google Scholar 

  35. Boškoski, P., Juričić, D.: Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures. Mech. Syst. Signal Process. 31, 369–381 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Bare Point Water Treatment Plant, and eMech Systems Inc., in Thunder Bay, ON, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osman, S., Wang, W. (2019). A New Hilbert-Huang Transform Technique for Fault Detection in Rolling Element Bearings. In: Lughofer, E., Sayed-Mouchaweh, M. (eds) Predictive Maintenance in Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-05645-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05645-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05644-5

  • Online ISBN: 978-3-030-05645-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics