Skip to main content

Distributed Chance-Constrained Model Predictive Control for Condition-Based Maintenance Planning for Railway Infrastructures

  • Chapter
  • First Online:
  • 5236 Accesses

Abstract

We develop a Model Predictive Control (MPC) approach for condition-based maintenance planning under uncertainty for railway infrastructure systems composed of multiple components. Piecewise-affine models with uncertain parameters are used to capture both the nonlinearity and uncertainties in the deterioration process. To keep a balance between robustness and optimality, we formulate the MPC optimization problem as a chance-constrained problem, which ensures that the constraints, e.g., bounds on the degradation level, are satisfied with a given probabilistic guarantee. Two distributed algorithms, one based on Dantzig-Wolfe decomposition and the other derived from a constraint-tightening technique, are proposed to improve the scalability of the MPC approach. Computational experiments show that the distributed method based on Dantzig-Wolfe decomposition performs the best in terms of computational time and convergence to global optimality. By comparing the chance-constrained MPC approaches with deterministic approach, and traditional time-based maintenance approach, we show that despite their high computational requirements, chance-constrained MPC approaches are cost-efficient and robust in the presence of uncertainties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zoeteman, A., Li, Z., Dollevoet, R.: Dutch research results in wheel rail interface management: 2001–2013 and beyond. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 228(6), 642–651 (2014)

    Google Scholar 

  2. Sandström, J., Ekberg, A.: Predicting crack growth and risks of rail breaks due to wheel flat impacts in heavy haul operations. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 223(2), 153–161 (2009)

    Google Scholar 

  3. Jamshidi, A., Núñez, A., Li, Z., Dollevoet, R.: Maintenance decision indicators for treating squats in railway infrastructures. In: 94th Annual Meeting Transportation Research Board, Washington, 11–15 January 2015. TRB (2015)

    Google Scholar 

  4. Zoeteman, A.: Life cycle cost analysis for managing rail infrastructure. Eur. J. Transp. Infrastruct. Res. 1(4) (2001)

    Google Scholar 

  5. Al-Douri, Y., Tretten, P., Karim, R.: Improvement of railway performance: a study of Swedish railway infrastructure. Int. J. Mod. Transport. 24(1), 22–37 (2016)

    Google Scholar 

  6. Kobbacy, K., Murthy, D.: Complex System Maintenance Handbook. Springer Science & Business Media, London (2008)

    MATH  Google Scholar 

  7. Ben-Daya, M., Kumar, U., Murthy, D.: Condition-based maintenance. In: Introduction to Maintenance Engineering: Modeling, Optimization, and Management, pp. 355–387. Wiley, Chichester (2016)

    Google Scholar 

  8. Jardine, A., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sig. Process. 20(7), 1483–1510 (2006)

    Google Scholar 

  9. Fararooy, S., Allan, J.: Condition-based maintenance of railway signalling equipment. In: International Conference on Electric Railways in a United Europe, pp. 33–37. IET, Amsterdam (1995)

    Google Scholar 

  10. Ahmad, R., Kamaruddin, S.: An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012)

    Google Scholar 

  11. Dekker, R.: Applications of maintenance optimization models: a review and analysis. Reliab. Eng. Syst. Saf. 51(3), 229–240 (1996)

    Google Scholar 

  12. Scarf, P.: On the application of mathematical models in maintenance. Eur. J. Oper. Res. 99(3), 493–506 (1997)

    MATH  Google Scholar 

  13. Wen, M., Li, R., Salling, K.: Optimization of preventive condition-based tamping for railway tracks. Eur. J. Oper. Res. 252(2), 455–465 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Famurewa, S., Xin, T., Rantatalo, M., Kumar, U.: Optimisation of maintenance track possession time: a tamping case study. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 229(1), 12–22 (2015)

    Google Scholar 

  15. Mercier, S., Meier-Hirmer, C., Roussignol, M.: Bivariate Gamma wear processes for track geometry modelling, with application to intervention scheduling. Struct. Infrastruct. Eng. 8(4), 357–366 (2012)

    Google Scholar 

  16. Quiroga, L., Schnieder, E.: Monte Carlo simulation of railway track geometry deterioration and restoration. Proc. Inst. Mech. Eng. O J. Risk Reliab. 226,(3), 274–282 (2012)

    Google Scholar 

  17. Vale, C., Ribeiro, I.: Railway condition-based maintenance model with stochastic deterioration. J. Civ. Eng. Manag. 20(5), 686–692 (2014)

    Google Scholar 

  18. Jamshidi, A., Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Dollevoet, R., Li, Z., De Schutter, B.: A big data analysis approach for rail failure risk assessment. Risk Anal. 37(8), 1495–1507 (2017)

    Google Scholar 

  19. Camacho, E., Alba, C.: Model Predictive Control. Springer Science & Business Media, London (2013)

    Google Scholar 

  20. Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)

    Google Scholar 

  21. Nikolaou, M.: Model predictive controllers: a critical synthesis of theory and industrial needs. Adv. Chem. Eng. 26, 131–204 (2001)

    Google Scholar 

  22. Zafra-Cabeza, A., Maestre, J., Ridao, M., Camacho, E., Sánchez, L.: Hierarchical distributed model predictive control for risk mitigation: an irrigation canal case study. J. Process Control 21(5), 787–799 (2011)

    Google Scholar 

  23. Schildbach, G., Morari, M.: Scenario-based model predictive control for multi-echelon supply chain management. Eur. J. Oper. Res. 252(2), 540–549 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Nandola, N., Rivera, D.: An improved formulation of hybrid model predictive control with application to production-inventory systems. IEEE Trans. Control Syst. Technol. 21(1), 121–135 (2013)

    Google Scholar 

  25. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    MathSciNet  MATH  Google Scholar 

  26. De Schutter, B., De Moor, B.: Optimal traffic light control for a single intersection. Eur. J. Control. 4(3), 260–276 (1998)

    MATH  Google Scholar 

  27. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  28. Feizollahi, M., Costley, M., Ahmed, S., Grijalva, S.: Large-scale decentralized unit commitment. Int. J. Electr. Power Energy Syst. 73, 97–106 (2015)

    Google Scholar 

  29. Sebastio, S., Gnecco, G., Bemporad, A.: Optimal distributed task scheduling in volunteer clouds. Comput. Oper. Res. 81, 231–246 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Mendes, P., Maestre, J., Bordons, C., Normey-Rico, J.: A practical approach for hybrid distributed mpc. J. Process Control 55, 30–41 (2017)

    Google Scholar 

  31. Kuwata, Y., Richards, A., Schouwenaars, T., How, J.: Distributed robust receding horizon control for multivehicle guidance. IEEE Trans. Control Syst. Technol. 15(4), 627–641 (2007)

    Google Scholar 

  32. Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Dantzig, G., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)

    MATH  Google Scholar 

  34. Rahmaniani, R., Crainic, T., Gendreau, M., Rei, W.: The Benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Gunnerud, V., Foss, B.: Oil production optimization-a piecewise linear model, solved with two decomposition strategies. Comput. Chem. Eng. 34(11), 1803–1812 (2010)

    Google Scholar 

  36. Morari, M., Zafiriou, E.: Robust Process Control, vol. 488. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  37. Gruber, J., Ramirez, D., Limon, D., Alamo, T.: Computationally efficient nonlinear min-max model predictive control based on Volterra series models – application to a pilot plant. J. Process Control 23(4), 543–560 (2013)

    Google Scholar 

  38. Prekopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138. Princeton University Press, Princeton (1970)

    Google Scholar 

  39. Grosso, J., Ocampo-Martínez, C., Puig, V., Joseph, B.: Chance-constrained model predictive control for drinking water networks. J. Process Control 24(5), 504–516 (2014)

    Google Scholar 

  40. Jurado, I., Maestre, J., Velarde, P., Ocampo-Martinez, C., Fernández, I., Tejera, B.I., del Prado, J.: Stock management in hospital pharmacy using chance-constrained model predictive control. Comput. Biol. Med. 72, 248–255 (2016)

    Google Scholar 

  41. Su, Z., Jamshidi, A., Núñez, A., Baldi, S., De Schutter, B.: Multi-level condition-based maintenance planning for railway infrastructures – a scenario-based chance-constrained approach. Transp. Res. C Emerg. Tech. 84, 92–123 (2017)

    Google Scholar 

  42. Pintér, J.: Deterministic approximations of probability inequalities. Z. Oper. Res. 33(4), 219–239 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Shapiro, A.: Sample average approximation. In: Encyclopedia of Operations Research and Management Science, pp. 1350–1355. Springer, Boston (2013)

    Google Scholar 

  45. Esfahani, P., Sutter, T., Lygeros, J.: Performance bounds for the scenario approach and an extension to a class of non-convex programs. IEEE Trans. Autom. Control 60(1), 46–58 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Margellos, K., Goulart, P., Lygeros, J.: On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control 59(8), 2258–2263 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Alamo, T., Tempo, R., Luque, A.: On the sample complexity of randomized approaches to the analysis and design under uncertainty. In: American Control Conference (ACC), 2010, pp. 4671–4676. IEEE, Baltimore (2010)

    Google Scholar 

  48. Su, Z., Núñez, A., Jamshidi, A., Baldi, S., Li, Z., Dollevoet, R., De Schutter, B.: Model predictive control for maintenance operations planning of railway infrastructures: In: Computational Logistics (Proceedings of the 6th International Conference on Computational Logistics (ICCL’15), Delft, Sept. 2015), pp. 673–688 (2015)

    Google Scholar 

  49. Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    MathSciNet  MATH  Google Scholar 

  50. Chisci, L., Rossiter, J., Zappa, G.: Systems with persistent disturbances: predictive control with restricted constraints. Automatica 37(7), 1019–1028 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Cassels, J.: An Introduction to the Geometry of Numbers. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  52. Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming 1958–2008, pp. 431–502. Springer, Berlin (2010)

    MATH  Google Scholar 

  53. Li, Z., Molodova, M., Núñez, A., Dollevoet, R.: Improvements in axle box acceleration measurements for the detection of light squats in railway infrastructure. IEEE Trans. Ind. Electron. 62(7), 4385–4397 (2015)

    Google Scholar 

  54. Molodova, M., Li, Z., Núñez, A., Dollevoet, R.: Automatic detection of squats in railway infrastructure. IEEE Trans. Intell. Transp. Syst. 15(5), 1980–1990 (2014)

    Google Scholar 

  55. Song, Z., Yamada, T., Shitara, H., Takemura, Y.: Detection of damage and crack in railhead by using eddy current testing. J. Electromagn. Anal. Appl. 3(12), 546 (2011)

    Google Scholar 

  56. Fan, Y., Dixon, S., Edwards, R., Jian, X.: Ultrasonic surface wave propagation and interaction with surface defects on rail track head. NDT & E Int. 40(6), 471–477 (2007)

    Google Scholar 

Download references

Acknowledgements

Research sponsored by the NWO/ProRail project “Multi-party risk management and key performance indicator design at the whole system level (PYRAMIDS),” project 438-12-300, which is partly financed by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Su .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Parameters for Case Study

See Table 3.

Table 3 Parameters of the functions \(f_j^{\text{Deg}}\) and \(f_j^{\text{Gr}}\) for five different models. Both the nominal values and the 95% nonsimultaneous confidence bounds (given in the square brackets) are provided for all uncertain parameters

1.2 Cyclic Approach

Let t 0,j denote the time instant of the first replacement on section j. Grinding is performed every T Gr,j after the first replacement for section j. Furthermore, we assume that replacement is performed after r consecutive grindings since the last replacement on section j. Let k end denote the planning horizon. Then the offline optimization problem of the cyclic maintenance approach can be formulated as:

$$\displaystyle \begin{aligned} \min_{t_0,\,T_{\text{Gr}},\,r}\sum_{k=1}^{k_{\mathrm{end}}}\sum_{j=1}^{n}x_{j,k}^{\mathrm{con}}+\lambda\sum_{q=2}^{3}c_{q,j}^{\text{Maint}}I_{u_{j,k}=q}{} \end{aligned} $$
(41)

subject to

$$\displaystyle \begin{aligned} x_{j,k+1}&=f_j(x_{j,k},\,u_{j,k};\,\mathbb{E}(\theta_{j,k}))\quad \forall j\in\{1,\dots,n\},\,\forall k\in\{0,\dots,\,k_{\mathrm{end}}-1\}{} \end{aligned} $$
(42)
$$\displaystyle \begin{aligned} x^{\mathrm{con}}_{j,k} & \leq x_{\max}^{\mathrm{con}},\quad x^{\mathrm{aux}}_{j,k} \leq x^{\mathrm{aux}}_{\max}\quad \forall j\in\{1,\dots,n\},\,\forall k\in\{1,\dots,\,k_{\mathrm{end}}\}{} \end{aligned} $$
(43)
$$\displaystyle \begin{aligned} u_{j,k}&=\begin{cases} 2,\, \text{if }(k-t_{0,j})\text{mod } \text{round}(T_{\text{Gr},j})=0\\ 3,\, \text{if } k=t_{0,j}\text{ or }(k-t_{0,j}) \text{mod } \text{round}(rT_{\text{Gr},j})=0\\ 1,\, \text{otherwise} \end{cases}{} \end{aligned} $$
(44)
$$\displaystyle \begin{aligned} &\forall j\in\{1,\dots,n\},\,\forall k\in\{1,\dots,\,k_{\mathrm{end}}\}\notag\\ & 1\leq t_{0,j} \leq T_{\max}\quad \forall j\in\{1,\dots,n\}{} \end{aligned} $$
(45)
$$\displaystyle \begin{aligned} & 1 \leq T_{j,\text{Gr}}\leq T_{\max}\quad \forall j\in\{1,\dots,n\}{} \end{aligned} $$
(46)
$$\displaystyle \begin{aligned} &1 \leq \mu_j\leq \mu_{\max}\quad \forall j\in\{1,\dots,n\}.{} \end{aligned} $$
(47)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, Z., Jamshidi, A., Núñez, A., Baldi, S., Schutter, B.D. (2019). Distributed Chance-Constrained Model Predictive Control for Condition-Based Maintenance Planning for Railway Infrastructures. In: Lughofer, E., Sayed-Mouchaweh, M. (eds) Predictive Maintenance in Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-05645-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05645-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05644-5

  • Online ISBN: 978-3-030-05645-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics