Skip to main content

Automated Process Optimization in Manufacturing Systems Based on Static and Dynamic Prediction Models

  • Chapter
  • First Online:
Predictive Maintenance in Dynamic Systems

Abstract

A key aspect in predictive maintenance is the early recognition of product downtrends and a proper reaction on it, to reduce production waste and to avoid machine failures, components destruction, and risks for operators. We propose an approach for the automated optimization of process parameters in manufacturing systems in order to automatically compensate possible downtrends in product quality at an early stage. This should significantly reduce or even avoid manual (reaction) efforts for operators which are often time-intensive and laborious. Such downtrends are recognized by prediction models for product quality, which are extracted from process data and which come in two different variants: (1) static predictive mappings established based on process (machining) parameter settings through a combination of a new hybrid variant of design of experiment (DoE), cross-correlation analysis, and data-driven mapping construction; and (2) dynamic forecast models which respect the time-series trends of process values measured during on-line production, being able to properly recognize undesired changes and dynamics happening (unexpectedly) during the process. These models will have the property to be able to self-adapt and evolve over time based on new recordings; they employ generalized (flexible) evolving fuzzy systems (GEFS) combined with a new incremental update of the latent variable space obtained through partial least squares (PLS). Both types of prediction models can then be used as surrogate mappings within a multi-objective, evolutionary optimization process for important target quality criteria, which relies on a fast co-evolution strategy. Several results from a micro-fluidic chip production process will be included to demonstrate the applicability and performance of the proposed methods and to discuss open challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abonyi, J.: Fuzzy Model Identification for Control. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  2. Angelov, P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst. 159(23), 3160–3182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aumi, S., Corbett, B., Mhaskary, P.: Model predictive quality control of batch processes. In: 2012 American Control Conference, pp. 5646–5651. Fairmont Queen Elizabeth, Montréal (2012)

    Google Scholar 

  4. Carreira-Perpinan, M.: A review of dimension reduction techniques. Tech. Rep. CS-96-09, Dept. of Computer Science, University of Sheffield, Sheffield (1997)

    Google Scholar 

  5. Cauchi, N., Macek, K., Abate, A.: Model-based predictive maintenance in building automation systems with user discomfort. Energy 138, 306–315 (2017)

    Article  Google Scholar 

  6. Cernuda, C., Lughofer, E., Hintenaus, P., Märzinger, W., Reischer, T., Pawlicek, M., Kasberger, J.: Hybrid adaptive calibration methods and ensemble strategy for prediction of cloud point in melamine resin production. Chemom. Intell. Lab. Syst. 126, 60–75 (2013)

    Article  Google Scholar 

  7. Chockalingam, K., Jawahar, N., Ramanathan, K., Banerjee, P.: Optimization of stereolithography process parameters for part strength using design of experiments. Int. J. Adv. Manuf. Technol. 29(1), 79–88 (2006)

    Article  Google Scholar 

  8. Coello, C.C., Lamont, G.: Applications of multi-objective evolutionary algorithms. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  9. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  10. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Dovzan, D., Logar, V., Skrjanc, I.: Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. 23(5), 1761–1776 (2015)

    Article  Google Scholar 

  13. Fonseca, D.J.: A knowledge-based system for preventive maintenance. Expert Syst. 17(5), 241–247 (2000)

    Article  Google Scholar 

  14. Franceschini, G., Macchietto, S.: Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci. 63(19), 4846–4872 (2008)

    Article  Google Scholar 

  15. Frieden, B., Gatenby, R.: Exploratory Data Analysis Using Fisher Information. Springer, New York (2007)

    Book  MATH  Google Scholar 

  16. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), article: 44 (2014)

    Article  MATH  Google Scholar 

  17. Greeff, M., Engelbrecht, A.P.: Dynamic multi-objective optimization using PSO. In: Multi-Objective Swarm Intelligent Systems, pp. 105–123. Springer, Berlin (2010)

    Google Scholar 

  18. Gu, S., Ren, J., Vancso, G.: Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur. Polym. J. 41(11), 2559–2568 (2005)

    Article  Google Scholar 

  19. Haenlein, M., Kaplan, A.: A beginner’s guide to partial least squares (PLS) analysis. Underst. Stat. 3(4), 283–297 (2004)

    Article  Google Scholar 

  20. Harrel, F.: Regression Modeling Strategies. Springer, New York (2001)

    Book  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  22. Helbig, M., Engelbrecht, A.P.: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems. Swarm Evol. Comput. 14, 31–47 (2014)

    Article  Google Scholar 

  23. Jain, N., Jain, V., Debb, K.: Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. Int. J. Mach. Tools Manuf. 47(6), 900–919 (2007)

    Article  Google Scholar 

  24. Jong, K.D.: Evolutionary Computation: A Unified Approach. MIT Press, New York (2006)

    MATH  Google Scholar 

  25. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghedira, K.: Discussion and review on evolving data streams and concept drift adapting. Evol. Syst. 9(1), 1–23 (2017)

    Article  Google Scholar 

  26. Kluska, J.: Analytical Methods in Fuzzy Modeling and Control, vol. 241. Springer, Berlin (2009)

    MATH  Google Scholar 

  27. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2005), pp. 443–450. IEEE Press, Piscataway (2005)

    Google Scholar 

  28. Lemos, A., Caminhas, W., Gomide, F.: Multivariable Gaussian evolving fuzzy modeling system. IEEE Trans. Fuzzy Syst. 19(1), 91–104 (2011)

    Article  Google Scholar 

  29. Levitt, J.: Complete Guide to Preventive and Predictive Maintenance. Industrial Press Inc., New York (2011)

    Google Scholar 

  30. Liao, W., Wang, Y.: Data-driven machinery prognostics approach using in a predictive maintenance model. J. Comput. 8(1), 225–231 (2013)

    Article  MathSciNet  Google Scholar 

  31. Liu, Y.: Predictive modeling for intelligent maintenance in complex semiconductor manufacturing processes. Ph.D. thesis, University of Michigan, Ann Arbor (2008)

    Google Scholar 

  32. Lughofer, E.: Evolving fuzzy systems — fundamentals, reliability, interpretability and useability. In: P. Angelov (ed.) Handbook of Computational Intelligence, pp. 67–135. World Scientific, New York (2016)

    Chapter  Google Scholar 

  33. Lughofer, E.: On-line active learning: a new paradigm to improve practical useability of data stream modeling methods. Inf. Sci. 415–416, 356–376 (2017)

    Article  Google Scholar 

  34. Lughofer, E., Angelov, P.: Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Appl. Soft Comput. 11(2), 2057–2068 (2011)

    Article  Google Scholar 

  35. Lughofer, E., Kindermann, S.: SparseFIS: data-driven learning of fuzzy systems with sparsity constraints. IEEE Trans. Fuzzy Syst. 18(2), 396–411 (2010)

    Google Scholar 

  36. Lughofer, E., Cernuda, C., Kindermann, S., Pratama, M.: Generalized smart evolving fuzzy systems. Evol. Syst. 6(4), 269–292 (2015)

    Article  Google Scholar 

  37. Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T.: Integrating new classes on the fly in evolving fuzzy classifier designs and its application in visual inspection. Appl. Soft Comput. 35, 558–582 (2015)

    Article  Google Scholar 

  38. Lughofer, E., Pollak, R., Zăvoianu, A.C., Meyer-Heye, P., Zorrer, H., Eitzinger, C., Haim, J., Radauer, T.: Self-adaptive time-series based forecast models for predicting quality criteria in microfluidics chip production. In: 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), pp. 1–8. IEEE, Exeter (2017)

    Google Scholar 

  39. Lughofer, E., Pratama, M., Skrjanc, I.: Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation. IEEE Trans. Fuzzy Syst. 26(4), 1854–1865 (2018)

    Article  Google Scholar 

  40. Lughofer, E., Zavoianu, A., Pollak, R., Pratama, M., Meyer-Heye, P., Zörrer, H., Eitzinger, C., Radauer, T.: Autonomous supervision and optimization of product quality in a multi-stage manufacturing process based on self-adaptive prediction models. J. Process Control (2019, to appear)

    Google Scholar 

  41. Lughofer, E., Zavoianu, A.C., Pollak, R., Meyer-Heye, P., Zörrer, H., Eitzinger, C., Lehner, J., Radauer, T., Pratama, M.: Evolving time-series based prediction models for quality criteria in a multi-stage production process. In: Proceedings of the IEEE Evolving and Adaptive Intelligent Systems Conference (EAIS) 2018, Rhodos, pp. 1–10 (2018)

    Google Scholar 

  42. Lughofer, E., Zavoianu, A.C., Pollak, R., Pratama, M., Meyer-Heye, P., Zörrer, H., Eitzinger, C., Haim, J., Radauer, T.: Self-adaptive evolving forecast models with incremental PLS space update for on-line predicting quality of micro-fluidic chips. Eng. Appl. Artif. Intell. 68, 131–151 (2018)

    Article  Google Scholar 

  43. McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  44. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  45. Mobley, R.: An Introduction to Predictive Maintenance, 2nd edn. Elsevier Science, Woburn (2002)

    Google Scholar 

  46. Montgomery, D.: Design and Analysis of Experiments. Wiley, New York (1991)

    MATH  Google Scholar 

  47. Montgomery, D.: Introduction to Statistical Quality Control, 6th edn. Wiley, New York (2008)

    MATH  Google Scholar 

  48. Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of Page-Hinkley, an approach for fault detection in an agro-alimentary production system. In: Proceedings of the Asian Control Conference, vol. 2, pp. 815–818 (2004)

    Google Scholar 

  49. Nikzad-Langerodi, R., Lughofer, E., Cernuda, C., Reischer, T., Kantner, W., Pawliczek, M., Brandstetter, M.: Calibration model maintenance in melamine resin production: integrating drift detection, smart sample selection and model adaptation. Anal. Chim. Acta 1013, 1–12 (featured article) (2018)

    Article  Google Scholar 

  50. Paoletti, S., Juloski, A., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid systems a tutorial. Eur. J. Control 13(2–3), 242–260 (2007)

    Article  MATH  Google Scholar 

  51. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley, Hoboken (2007)

    Book  Google Scholar 

  52. Permin, E., Bertelsmeier, F., Blum, M., Bützler, J., Haag, S., Kuz, S., Özdemir, D., Stemmler, S., Thombansen, U., Schmitt, R., et al.: Self-optimizing production systems. Procedia CIRP 41, 417–422 (2016)

    Article  Google Scholar 

  53. Pratama, M., Anavatti, S., Angelov, P., Lughofer, E.: PANFIS: a novel incremental learning machine. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 55–68 (2014)

    Article  Google Scholar 

  54. Pratama, M., Anavatti, S., Lughofer, E.: GENEFIS: towards an effective localist network. IEEE Trans. Fuzzy Syst. 22(3), 547–562 (2014)

    Article  Google Scholar 

  55. Pratama, M., Anavatti, S., Lu, J.: Recurrent classifier based on an incremental meta-cognitive scaffolding algorithm. IEEE Trans. Fuzzy Syst. 23(6), 2048–2066 (2015)

    Article  Google Scholar 

  56. Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C.: An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171, 89–105 (2016)

    Article  Google Scholar 

  57. Rhinehart, R.R.: Nonlinear Regression Modeling for Engineering Applications — Modeling, Model Validation, and Enabling Design of Experiments. Wiley, Chichester (2016)

    Book  Google Scholar 

  58. Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)

    Book  MATH  Google Scholar 

  59. Serdio, F., Lughofer, E., Zavoianu, A.C., Pichler, K., Pichler, M., Buchegger, T., Efendic, H.: Improved fault detection employing hybrid memetic fuzzy modeling and adaptive filters. Appl. Soft Comput. 51, 60–82 (2017)

    Article  Google Scholar 

  60. Shaker, A., Lughofer, E.: Self-adaptive and local strategies for a smooth treatment of drifts in data streams. Evol. Syst. 5(4), 239–257 (2014)

    Article  Google Scholar 

  61. Skrjanc, I.: Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Trans. Fuzzy Syst. 23(4), 861–871 (2015)

    Article  Google Scholar 

  62. Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. Su, Z., Jamshidi, A., Núñez, A., Baldi, S., Schutter, B.D.: Multi-level condition-based maintenance planning for railway infrastructures — a scenario-based chance-constrained approach. Transp. Res. Part C Emerg. Technol. 84, 92–123 (2017)

    Article  Google Scholar 

  64. Varmuza, K., Filzmoser, P.: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  65. Wang, L., Gao, R.X.: Condition Monitoring and Control for Intelligent Manufacturing. Springer, London (2006)

    Book  Google Scholar 

  66. Weigl, E., Heidl, W., Lughofer, E., Eitzinger, C., Radauer, T.: On improving performance of surface inspection systems by on-line active learning and flexible classifier updates. Mach. Vis. Appl. 27(1), 103–127 (2016)

    Article  Google Scholar 

  67. Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)

    Article  Google Scholar 

  68. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  69. Wise, B.M., Roginski, R.T.: A calibration model maintenance roadmap. IFAC PapersOnLine 48(8), 260–265 (2015)

    Article  Google Scholar 

  70. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001)

    Article  Google Scholar 

  71. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Yusoff, Y., Ngadiman, M.S., Zain, A.M.: Overview of NSGA-II for optimizing machining process parameters. Procedia Eng. 15, 3978–3983 (2011)

    Article  Google Scholar 

  73. Zavoianu, A.C., Lughofer, E., Bramerdorfer, G., Amrhein, W., Klement, E.: DECMO2 — a robust hybrid multi-objective evolutionary algorithm. Soft Comput. 19(12), 3551–3569 (2015)

    Article  Google Scholar 

  74. Zavoianu, A.C., Lughofer, E., Pollak, R., Meyer-Heye, P., Eitzinger, C., Radauer, T.: Multi-objective knowledge-based strategy for process parameter optimization in micro-fluidic chip production. In: Proceedings of the SSCI 2017 Conference (CIES Workshop), Honolulu, pp. 1927–1934 (2017)

    Google Scholar 

  75. Zeng, X.Q., Li, G.Z.: Incremental partial least squares analysis of big streaming data. Pattern Recogn. 47, 3726–3735 (2014)

    Article  Google Scholar 

  76. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Tech. rep., School of CS & EE, University of Essex (2009)

    Book  Google Scholar 

  77. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2002)

    Google Scholar 

  78. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Austrian research funding association (FFG) within the scope of the “IKT of the future” programme, project “Generating process feedback from heterogeneous data sources in quality control” (contract # 849962). The first author also acknowledges the support by the LCM–K2 Center within the framework of the Austrian COMET-K2 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Lughofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lughofer, E., Zavoianu, AC., Pratama, M., Radauer, T. (2019). Automated Process Optimization in Manufacturing Systems Based on Static and Dynamic Prediction Models. In: Lughofer, E., Sayed-Mouchaweh, M. (eds) Predictive Maintenance in Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-05645-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05645-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05644-5

  • Online ISBN: 978-3-030-05645-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics