Skip to main content

Prototype Moderator at the AKR-2 Training Reactor

  • Chapter
  • First Online:
Target Station Optimization for the High-Brilliance Neutron Source HBS

Part of the book series: Springer Theses ((Springer Theses))

  • 182 Accesses

Abstract

The simulation results on the optimization studies of a laser- and an accelerator-driven neutron source which are shown in Chaps. 3 and 4, respectively, are to be verified by means of experimental measurements on a prototype moderator. For this purpose, it is advisable to test the moderator at an existing and well-characterized neutron source with the advantage that additional effects like the ion-target interaction can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    During the fission of 235U, a total energy of 204 MeV is released whereby 180 MeV are ultimately converted into heat from kinetic energy of the fission fragments (167 MeV), the produced neutrons (5 MeV), and electrons of the beta-unstable fission products (8 MeV).

  2. 2.

    A goniometer is used to either measure an angle or allow an object to be rotated to a precise angular position.

  3. 3.

    Ionization chambers whose electrode is coated with enriched uranium are suitable for detecting slow neutrons and are called fission chambers.

References

  1. Institute of Power Engineering Training Reactor. Training reactor AKR-2. Description of the reactor facility, procedure of operation. Technical Report (Technical University Dresden, 2005). https://tu-dresden.de/ing/maschinenwesen/iet/wket/ressourcen/dateien/akr2/Lehrmaterialien/aufbaue.pdf. Accessed 18 Oct 2016

  2. Institute of Power Engineering Training Reactor, TU Dresden. Ausbildungskernreaktor. Lehre—Forschung—Information. Booklet. https://tu-dresden.de/ing/maschinenwesen/iet/wket/ressourcen/dateien/akr2/Lehrmaterialien/flyer.pdf. Accessed 19 Oct 2016

  3. U. Rücker et al., The Jülich high-brilliance neutron source project. Eur. Phys. J. Plus 131(1), 19 (2016). https://doi.org/10.1140/epjp/i2016-16019-5

  4. J.P. Dabruck et al., Development of a moderator system for the high brilliance neutron source project, in IlNuovo Cimento C 38.192, 8 May 2016. https://doi.org/10.1393/ncc/i2015-15192-0. https://www.sif.it/riviste/ncc/econtents/2015/038/06/article/18

  5. C. Lange, J. Gonzales, MCNP-Eingabefile AKR. MCNP Input file of the AKR-2 Reactor. TU Dresden, Chair for Hydrogen and Nuclear Energy Technology, 16 May 2012

    Google Scholar 

  6. X-5 Monte Carlo Team. MCNP—A General N-Particle Transport Code, Version 5. LA-UR-03-1987. Technical report Los Alamos National Laboratory, 1 Feb 2008. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf

  7. W. Hansen, R. Schneider, Erweiterung und Verifikation von TRAMO zur Lösung von gekoppelten Neutron/Gamma-transportproblemen und Überprüfung von Kerndatenbibliotheken. Final Report DFG Project. Project Number HA-3009/1-1. Technical University Dresden, 27 Feb 2002

    Google Scholar 

  8. T. Cronert, High brilliance thermal and cold neutron moderators–an experimental validation of MCNP-simulations for the HBS-project. Ph.D. thesis. Jülich: Forschungszentrum Jülich, Jülich Centre for Neutron Science 2

    Google Scholar 

  9. Y. Ya. Milenko, R.M. Sibileva, M.A. Strzhemechny, Natural ortho-para conversion rate in liquid and gaseous hydrogen. J. Low Temp. Phys. 107(1), 77–92 (1997). ISSN: 1573-7357. https://doi.org/10.1007/BF02396837

    Article  ADS  Google Scholar 

  10. D.H. Weitzel, W.V. Loebenstein, J.W. Draper, O.E. Park, Ortho-para catalysis in liquid-hydrogen production. J. Res. Natl. Bur. Stand. 60(3) (1958). https://doi.org/10.6028/jres.060.026. http://nvlpubs.nist.gov/nistpubs/jres/60/jresv60n3p221_A1b.pdf

    Article  Google Scholar 

  11. K. Batkov, A. Takibayev, L. Zanini, F. Mezei, Unperturbed moderator brightness in pulsed neutron sources, in Nuclear Instruments Methods A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 729, pp. 500–505 (2013). ISSN: 0168-9002. https://doi.org/10.1016/j.nima.2013.07.031. http://www.sciencedirect.com/science/article/pii/S0168900213010073

    Article  ADS  Google Scholar 

  12. F. Mezei et al., Low dimensional neutron moderators for enhanced source brightness. J. Neutron Res. 172, 101–105 (2014). https://doi.org/10.3233/JNR-140013. https://arxiv.org/pdf/1311.2474

  13. V. Ananiev et al., Pelletized cold moderator of the IBR-2 reactor: current status and future development, in Journal of Physics: Conference Series, vol. 746, No. 1 (2016). https://doi.org/10.1088/1742-6596/746/1/012031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Dabruck .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabruck, J.P. (2018). Prototype Moderator at the AKR-2 Training Reactor. In: Target Station Optimization for the High-Brilliance Neutron Source HBS. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-05639-1_5

Download citation

Publish with us

Policies and ethics