Skip to main content

Optimization Studies on an Accelerator-Driven Neutron Source

  • Chapter
  • First Online:
Target Station Optimization for the High-Brilliance Neutron Source HBS

Part of the book series: Springer Theses ((Springer Theses))

  • 223 Accesses

Abstract

Optimization studies for the accelerator-driven HBS are based on the simulation results on the laser-driven neutron source discussed in the previous chapter. Findings regarding the moderator material and the dependence of the neutron flux on the moderator configuration and in particular the idea of the Finger Moderator are therefore adopted to the accelerator-driven system. Another important aspect in the development of a concept for the accelerator-driven HBS is the target design, for which the neutron yield is investigated as a function of the incident particle type, its energy, and the target material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Speedup is a term used in computer science and mathematically describes the relationship between the serial and the parallel execution time of a program or algorithm.

References

  1. X-5 Monte Carlo Team, MCNP-A General N-Particle Transport Code, Version 5. LA-UR-03-1987. Technical report Los Alamos National Laboratory, 1 Feb 2008. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf

  2. A. Sperling, J.P. Dabruck, binning.java., Java Application for Twodimensional Binning of Scattered Data (Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 2015)

    Google Scholar 

  3. A. Nalbandyan, Simulation of Total Neutron Yields Produced by Proton Beams on Be Target (Report on Mini-Project. Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 2016)

    Google Scholar 

  4. P. Zakalek, Development of high-brilliant neutron source targets, in Workshop Presentation in Unkel, Germany. Jülich Center for Neutron Science 2, Forschungszentrum Jülich, vol. 29 (2016)

    Google Scholar 

  5. I. Tilquin et al., Experimental measurements of neutron fluxes produced by proton beams (23-80 MeV) on Be and Pb targets, in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545.1–2, 339–343 (2005). ISSN: 0168-9002. https://doi.org/10.1016/j.nima.2005.01.325, http://www.sciencedirect.com/science/article/pii/S016890020500522X

    Article  ADS  Google Scholar 

  6. S. Halfon et al., High-power liquid-lithium jet target for neutron production. Rev. Sci. Instrum. 84(12), 123507 (2013). https://doi.org/10.1063/1.4847158

    Article  ADS  Google Scholar 

  7. S. Halfon et al., Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target. Rev. Sci. Instrum. 85.5, 056105 (2014). https://doi.org/10.1063/1.4878627

    Article  ADS  Google Scholar 

  8. T. Kobayashi, K. Miura, N. Hayashizaki, M. Aritomi, Development of liquid-lithium film jet-flow for the target of 7Li(p,n)7Be reactions for BNCT. Appl. Radiat. Isot. 88, 198–202 (2014). ISSN 0969-8043. https://doi.org/10.1016/j.apradiso.2013.12.013, http://www.sciencedirect.com/science/article/pii/S096980431300609X (15th International Congress on Neutron Capture Therapy Impact of a New Radiotherapy Against Cancer)

    Article  Google Scholar 

  9. U. Rücker et al., The Jülich high-brilliance neutron source project. Eur. Phys. J. Plus 131(1), 19 (2016). https://doi.org/10.1140/epjp/i2016-16019-5

  10. J. Ulrich, Untersuchungen zurNeutronenproduktion mittels photonuklearer Wechselwirkungen (Available for internal use at NET, RWTH Aachen and its project partners, Aachen, Germany, 31 Dec 2015)

    Google Scholar 

  11. F.J. Bermejo, F. Sordo, ESS-Bilbao Target Station. Technical Design Report. ESS-Bilbao Target Devision, 1 July 2013, p. 33. ISRN: 978-84-695-8105-6. http://www.essbilbao.org/index.php/en/component/docman/doc_download/417-essb-ntar-2013-final-tdr-july

  12. L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik Band 1: Mechanik (Akademie Verlag, Berlin, Germany, 1970). ISBN: 978-3808556122

    Google Scholar 

  13. D. Meschede, Gerthsen Physik (Springer, Berlin, 2010). ISBN: 978-3-642-12893-6

    Google Scholar 

  14. Y. Yamagata, J. Ju, K. Hirota, Neutron generation source, and neutron generation device. EP Patent App. EP20130757266 (Japan) (2015). https://patents.google.com/patent/EP2824999A1/ja

  15. H. Kumada et al., Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 106, 78–83 (2015). https://doi.org/10.1016/j.apradiso.2015.07.033, http://www.sciencedirect.com/science/article/pii/S0969804315301159 (The 16th International Congress on Neutron Capture Therapy (ICNCT-16). Representative person of the Organizing Committee: Dr Hanna Koivunoro (Secretary general of the ICNCT-16))

    Article  Google Scholar 

  16. T. Rinckel, D.V. Baxter, J. Doskow, P.E. Sokol, T. Todd, Target performance at the low energy neutron source. Phys. Proc. 26, 168–177 (2012). ISSN: 1875-3892. https://doi.org/10.1016/j.phpro.2012.03.022, http://www.sciencedirect.com/science/article/pii/S1875389212004385

    Article  ADS  Google Scholar 

  17. H. Kumada et al., Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 106, 78–83 (2015). ISSN: 0969-8043. https://doi.org/10.1016/j.apradiso.2015.07.033, http://www.sciencedirect.com/science/article/pii/S0969804315301159 (The 16th International Congress on Neutron Capture Therapy (ICNCT-16). Representative person of the Organizing Committee: Dr Hanna Koivunoro (Secretary general of the ICNCT-16))

    Article  Google Scholar 

  18. J.M. Carpenter, Gallium-cooled target for compact accelerator-based neutron sources. Phys. Proc. 26, 132–141 (2012). ISSN: 1875-3892. https://doi.org/10.1016/j.phpro.2012.03.018, http://www.sciencedirect.com/science/article/pii/S1875389212004348

    Article  ADS  Google Scholar 

  19. J.W. Westwater, L.S. Tong, Boiling heat transfer and two-phase flow. AIChE J. 12.3, 616–617 (1966). ISSN: 1547-5905. https://doi.org/10.1002/aic.690120303 (Wiley)

    Article  Google Scholar 

  20. M.M. El-Wakil, Nuclear Heat Transport (American Nuclear Society, 1978). ISBN: 978-0-89448-014-0

    Google Scholar 

  21. B.W. Blackburn, J.C. Yanch, R.E. Klinkowstein, Development of a high power water cooled beryllium target for use in accelerator-based boron neutron capture therapy. Med. Phys. 25(10), 1967–1974 (1998). ISSN: 2473- 4209. https://doi.org/10.1118/1.598370

    Article  ADS  Google Scholar 

  22. I. Silverman, A. Nagler, High heat flux cooling with water jet impingement, in ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, vol. 1 (2004), pp. 277–282. https://doi.org/10.1115/HT-FED2004-56273

  23. J. Esposito et al., Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro. Appl. Radiat. Isot. 67, 7–8 (2009). ISSN: 0969-8043. https://doi.org/10.1016/j.apradiso.2009.03.085, http://www.sciencedirect.com/science/article/pii/S0969804309003017 (13th International Congress on Neutron Capture Therapy BNCT: a new option against cancer, S270–S273)

    Article  Google Scholar 

  24. C. Ceballos et al., Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL. Appl. Radiat. Isot. 69(12), 1660–1663 (2011). ISSN: 0969-8043. https://doi.org/10.1016/j.apradiso.2011.01.032. http://www.sciencedirect.com/science/article/pii/S0969804311000467 (Special Issue: 14th International Conference on Neutron Capture Therapy)

    Article  Google Scholar 

  25. B.W. Blackburn, J.C. Yanch, Liquid Gallium Cooling for a High-Power Beryllium Target for use in Accelerator Boron Neutron Capture Therapy (ABNCT) (Target Chemistry, 1999)

    Google Scholar 

  26. G. Speckbrock, S. Kamitz, M. Alt, H. Schmitt, Clinical Thermometer. EP0657023 (1996). http://www.freepatentsonline.com/EP0657023B1.html(visitedon09/11/2016)

  27. M. Winter, Gallium: The Essentials (The University of Sheffield and Web Elements Ltd., 1993–2016). https://www.webelements.com/gallium/

  28. Q. Xu, N. Qudalov, Q. Guo, H. Jaeger, E. Brown, Effect of Oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium (2012), p. 18. https://doi.org/10.1063/1.4724313, https://arxiv.org/abs/1201.4828v1

    Article  ADS  Google Scholar 

  29. Geratherm Medical AG, Galinstan fluid. Safety Data Sheet. Germany, 18 Mar 2004. http://www.rgmd.com/msds/msds.pdf(visitedon09/11/2016)

  30. M.D. Dickey et al., Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18(7), 1097–1104 (2008). ISSN: 1616-3028. https://doi.org/10.1002/adfm.200701216

    Article  Google Scholar 

  31. Y. Zhang, J.R.G. Evans, S. Yang, Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. J. Chem. Eng. Data 56(2), 328–337 (2011). https://doi.org/10.1021/je1011086

    Article  Google Scholar 

  32. U. Rücker, T. Brückel, T. Cronert, J.P. Dabruck, R. Nabbi, Vorrichtung zur Erzeugung von thermischen Neutronenstrahlen mit Hoher Billanz und Herstellungsverfahren. PUB:(DE-HGF)23 Patent 16166567.4-1556 (EP3091540B1) (Germany). JCNS-2/PGI-4/JARA-FIT (2016). http://juser.fz-juelich.de/record/810621

  33. R. Kajimoto et al., High intensity chopper spectrometer 4SEASONS At J-PARC. J. Neutron Res. 15(1), 5–12 (2007). https://doi.org/10.1080/10238160601048742

    Article  Google Scholar 

  34. K. Nakajima et al., AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn. 80(Suppl.B), SB028 (2011). https://doi.org/10.1143/JPSJS.80SB.SB028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Dabruck .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabruck, J.P. (2018). Optimization Studies on an Accelerator-Driven Neutron Source. In: Target Station Optimization for the High-Brilliance Neutron Source HBS. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-05639-1_4

Download citation

Publish with us

Policies and ethics