Skip to main content

Free Energy Calculations of Electric Field-Induced Chemistry

  • Chapter
  • First Online:
Computational Approaches for Chemistry Under Extreme Conditions

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 28))

Abstract

The old and challenging problem of dealing with the interaction between condensed matter systems and intense external electric fields are currently evolving in an impressive way. In fact, the growth of the computational resources allows for accurate first-principles numerical calculations showing unprecedented predictive power. We review the phenomenological evidence that has recently emerged from state-of-the-art ab initio molecular dynamics simulations in describing how static electric fields can be exploited to manipulate matter and possibly design novel compounds or materials, obtain new exotic properties, and achieve more efficient reaction yields. In particular, we show the microscopic behavior of simple molecular liquids (water, methanol, and simple mixtures), under the action of static and homogeneous electric fields, showing different shades of the effects produced by the application of the latter. In addition, ab initio molecular dynamics approaches are coupled with advanced free energy methods, that currently represents a unique technique for adequately treating, reproducing, and predicting both molecular mechanisms and chemical reaction networks triggered when matter is exposed to the action of intense electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. English NJ, Waldron CJ (2015) Phys Chem Chem Phys 17:12407

    Google Scholar 

  2. de Pomerai D et al (2003) FEBS Lett 543:93

    Article  Google Scholar 

  3. Porcelli M et al (1997) FEBS Lett 402:102

    Article  CAS  Google Scholar 

  4. Aragones AC et al (2016) Nature 531:88

    Google Scholar 

  5. Futera CJ, English NJ (2017) J Chem Phys 147:031102

    Article  Google Scholar 

  6. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Umari P, Pasquarello A (2002) Phys Rev Lett 89:157602

    Article  CAS  Google Scholar 

  8. Berry MV (1994) Proc R Soc Lond A 392:45

    Article  Google Scholar 

  9. King-Smith RD, Vanderbilt D (1993) Phys Rev B 47:1651

    Article  CAS  Google Scholar 

  10. Resta R (1994) Rev Mod Phys 66:899

    Article  CAS  Google Scholar 

  11. Desiraju G, Vittal J, Ramanan A (2011) Crystal engigneering: a textbook. World Scientific, New Jersey, London

    Book  Google Scholar 

  12. Nunes RW, Vanderbilt D (1994) Phys Rev Lett 73:712

    Article  CAS  Google Scholar 

  13. Nunes RW, Gonze X (2001) Phys Rev B 63:155107

    Article  Google Scholar 

  14. Resta R (1998) Phys Rev Lett 80:1800

    Article  CAS  Google Scholar 

  15. Wannier GH (1960) Phys Rev 117:432

    Article  Google Scholar 

  16. Nenciu G (1991) Rev Mod Phys 63:91

    Article  Google Scholar 

  17. Gonze X et al (1995) Phys Rev Lett 74:4035

    Article  CAS  Google Scholar 

  18. Gonze X et al (1997) Phys Rev Lett 78:294

    Article  CAS  Google Scholar 

  19. Pietrucci F (2017) Rev Phys 2:32

    Article  Google Scholar 

  20. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562

    Article  CAS  Google Scholar 

  21. Barducci A et al (2008) Phys Rev Lett 100:020603

    Article  Google Scholar 

  22. Torrie GM, Valleau JP (1977) J Comput Phys 23:187

    Article  Google Scholar 

  23. Kumar S et al (1992) J Comput Chem 13(13):1011

    Article  CAS  Google Scholar 

  24. Ferrenberg AM, Swendsen RH (1989) Phys Rev Lett 63:1195

    Article  CAS  Google Scholar 

  25. Bennet CJ (1976) J Comput Phys 22:245

    Article  Google Scholar 

  26. Shirts MR, Chodera JD (2008) J Chem Phys 129:124105

    Article  Google Scholar 

  27. Branduardi D et al (2007) J Chem Phys 126:054103

    Article  Google Scholar 

  28. Branduardi D et al (2011) J Chem Theory Comput 7:539

    Article  CAS  Google Scholar 

  29. Gallet G et al (2012) J Chem Theory Comput 8:4029

    Article  CAS  Google Scholar 

  30. Saitta AM et al (2015) Proc Natl Acad Sci USA 112:E343–E344

    Article  CAS  Google Scholar 

  31. Pietrucci F, Andreoni W (2014) J Chem Theory Comput 10:913

    Article  CAS  Google Scholar 

  32. Pietrucci F, Saitta AM (2015) Proc Natl Acad Sci USA 112:15030

    Article  CAS  Google Scholar 

  33. Cassone G et al (2017) Chem Sci 8:2329

    Article  CAS  Google Scholar 

  34. Sprik M (2000) Chem Phys 258:139

    Article  CAS  Google Scholar 

  35. Saitta AM, Saija F (2014) Proc Natl Acad Sci USA 111:13768

    Article  CAS  Google Scholar 

  36. Cassone G et al (2017) Sci Rep 7:6901

    Article  Google Scholar 

  37. Cassone G et al (2018) Chem Commun 54:3211–3214

    Google Scholar 

  38. Giannozzi P et al (2009) J Phys Condens Matter 21:395502

    Article  Google Scholar 

  39. Bonomi M et al (2009) Comput Phys Commun 180:1961

    Article  CAS  Google Scholar 

  40. Rappe AM et al (1990) Phys Rev B 44:13175

    Article  Google Scholar 

  41. Perdew JP et al (1997) Phys Rev Lett 77:3865; Ibidem Phys Rev Lett 78:1396

    Google Scholar 

  42. Becke AD (1988) Phys Rev A 38:3098; Lee C et al (1988) Phys Rev B 37:785

    Google Scholar 

  43. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  44. Bolhuis PG et al (2002) Ann Rev Phys Chem 53:291

    Article  CAS  Google Scholar 

  45. Marzari N et al (2012) Rev Mod Phys 84:1419

    Article  CAS  Google Scholar 

  46. Miller SL (1953) Science 117:528

    Article  CAS  Google Scholar 

  47. Bada JL (2004) Earth Plan Sci Lett 226:1

    Article  CAS  Google Scholar 

  48. Miyakawa S et al (2002) Proc Natl Acad Sci USA 99:14628

    Article  CAS  Google Scholar 

  49. Kim JH et al (2004) Appl Catal A General 264:37

    Article  CAS  Google Scholar 

  50. Yaripour F et al (2005) Catal Commun 6:542

    Article  CAS  Google Scholar 

  51. Yaripour F et al (2005) Catal Commun 6:147

    Article  CAS  Google Scholar 

  52. Song W et al (2002) J Am Chem Soc 124:3844

    Article  CAS  Google Scholar 

  53. Olah GA et al (2009) J Org Chem 74:487

    Article  CAS  Google Scholar 

  54. Cassone G et al (2015) J Chem Phys 142:054502

    Article  Google Scholar 

  55. Sellner B et al (2013) J Phys Chem B 117:10869

    Article  CAS  Google Scholar 

  56. Reischl B et al (2009) Mol Phys 107:495

    Article  CAS  Google Scholar 

  57. Bronstein Y et al (2016) Phys Rev B 93:024104

    Article  Google Scholar 

  58. Laporte S et al (2015) Phys Chem Chem Phys 17:20382

    Article  CAS  Google Scholar 

  59. Price D, Halley JW (1983) J Electroanal Chem 159:347

    Article  Google Scholar 

  60. Kreuzer J (1991) Surf Sci 246:336

    Article  CAS  Google Scholar 

  61. Schmickler W (1995) Surf Sci 335:416

    Article  CAS  Google Scholar 

  62. Stuve EM (2012) Chem Phys Lett 519–520:1

    Article  Google Scholar 

  63. Hammadi Z et al (2012) Appl Phys Lett 101:243110

    Article  Google Scholar 

  64. Lee WK et al (2013) Nano Res 6:767

    Article  CAS  Google Scholar 

  65. Shaik S et al (2016) Nat Chem 8:1091

    Article  CAS  Google Scholar 

  66. Balke N et al (2017) Nanotechnology 28:065704

    Article  Google Scholar 

  67. Geissler PL et al (2001) Science 291:2121

    Article  CAS  Google Scholar 

  68. Olsson MHM et al (2006) Phil Trans R Soc B 361:1417

    Article  CAS  Google Scholar 

  69. Nitzan A (2006) Chemical dynamics in condensed phases. Oxford University Press

    Google Scholar 

  70. Orr-Ewing AJ (2014) J Chem Phys 140:090901

    Article  Google Scholar 

  71. Nguyen VS et al (2013) J Phys Chem A 117:2543

    Article  CAS  Google Scholar 

  72. Guido CA et al (2012) J Chem Theory Comput 9:28

    Article  Google Scholar 

  73. Ma C et al (2014) J Phys Chem Lett 5:1672–1677

    Article  CAS  Google Scholar 

  74. Geissler PL et al (1999) J Phys Chem B 103:3706

    Article  CAS  Google Scholar 

  75. Ensing B et al (2006) Acc Chem Res 39:73

    Article  CAS  Google Scholar 

  76. Prasad BR et al (2013) J Phys Chem B 117:153

    Article  CAS  Google Scholar 

  77. Nguyen VS et al (2011) J Phys Chem A 115:841

    Article  CAS  Google Scholar 

  78. Iglesias E, Montenegro L (1996) J Chem Soc Faraday T 92:1205

    Google Scholar 

  79. Chaudhuri C et al (2001) J Phys Chem A 105:8906

    Article  CAS  Google Scholar 

  80. Saitta AM et al (2012) Phys Rev Lett 108:207801

    Article  Google Scholar 

  81. Crim FF (2012) Faraday Discuss 157:9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marco Saitta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cassone, G., Pietrucci, F., Saija, F., Saitta, A.M. (2019). Free Energy Calculations of Electric Field-Induced Chemistry. In: Goldman, N. (eds) Computational Approaches for Chemistry Under Extreme Conditions. Challenges and Advances in Computational Chemistry and Physics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-05600-1_5

Download citation

Publish with us

Policies and ethics