Skip to main content

Accelerated Molecular Dynamics Simulations of Shock-Induced Chemistry: Application to Liquid Benzene

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 28))

Abstract

Shock-induced phenomena in materials occur on timescales that while short may still be beyond the reach of traditional molecular dynamics simulations. The shock-induced chemistry of liquid benzene provides an excellent example of the importance of timescale in shock experiments; reactions are seen at about 13.3 GPa on microsecond timescales in plate impact experiments but it appears inert at up to 20 GPa over 100s of picoseconds during laser-driven shock experiments. We have studied the shock-induced chemistry of liquid benzene using a semiempirical reactive interatomic potential at timescales beyond those routinely accessible to traditional molecular dynamics simulations. We have applied replica-based accelerated molecular dynamics to this system because the initial chemical reactions themselves can be viewed as rare, state-to-state transitions that take place under thermal activation. Replica-based accelerated molecular dynamics enables us to parallelize the simulations in time with no loss of accuracy, provided that transitions (reactions) can be detected reliably. We have simulated the shocked chemical dynamics of benzene on timescales up to 7.7 ns with high parallel efficiency. The simulations show the formation dimers through Diels–Alder condensation. The dimers subsequently condense into larger polymeric structures, in good accord with experiments and quantum chemical data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akin MC, Chau R (2013) Observations of shock induced chemsity of cyclohexane. J Chem Phys 139:024502

    Article  CAS  Google Scholar 

  2. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  3. Bickham SR, Kress JD, Collins LA (2000) Molecular dynamics simulations of shocked benzene. J Chem Phys 112:9695

    Article  CAS  Google Scholar 

  4. Brenner DW, Robertson DH, Elert ML, White CT (1993) Detonations at nanometer resolution using molecular-dynamics. Phys Rev Lett 70:2174

    Article  CAS  Google Scholar 

  5. Bris CL, Leliévre T, Luskin M, Perez D (2012) A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl 18:119

    Google Scholar 

  6. Cawkwell MJ, Niklasson AMN (2012) Energy conserving, linear scaling born-oppenheimer molecular dynamics. J Chem Phys 137:134105

    Article  CAS  Google Scholar 

  7. Cawkwell MJ, Niklasson AMN, Dattelbaum DM (2015) Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene. J Chem Phys 142:064512

    Article  CAS  Google Scholar 

  8. Ciabini L, Santoro M, Gorelli FA, Bini R, Schettino V, Raugei S (2007) Triggering dynamics of the high-pressure benzene amorphization. Nat Mater 6:39

    Article  CAS  Google Scholar 

  9. Dang NC, Bolme CA, Moore DS, McGrane SD (2012) Shock induced chemistry in liquids studied with ultrafast dynamic ellipsometry and visible transient absorption spectroscopy. J Phys Chem A 116:10301

    Article  CAS  Google Scholar 

  10. Dattelbaum DM, Sheffield SA, Coe JD (2017) Shock-driven chemistry and reactive wave dynamics in liquid benzene. AIP Conf Proc 1793:040020

    Article  Google Scholar 

  11. Davis WC (1981) High explosives: the interaction of chemistry and mechanics. Los Alamos Sci 2:48

    CAS  Google Scholar 

  12. Dick RD (1970) Shock wave compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen. J Chem Phys 52:6021

    Article  CAS  Google Scholar 

  13. Elstner M, Poresag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  14. Elstner M, Seifert G (2014) Density functional tight binding. Philos Trans R Soc A 372:20120483

    Article  Google Scholar 

  15. Engelke R, Blais NC (1994) Chemical dimerization of crystalline anthracene produced by transient high pressure. J Chem Phys 101:10961

    Article  CAS  Google Scholar 

  16. Engelke R, Blais NC, Sheffield SA, Sander RK (2001) Production of a chemically-bound dimer of 2,4,6-tnt by transient high pressure. J Phys Chem A 105:6955–6964

    Article  CAS  Google Scholar 

  17. Erpenbeck JJ (1992) Molecular dynamics of detonation. I. Equation of state and Hugoniot curve for a simple reactive fluid. Phys Rev A 46:6404

    Google Scholar 

  18. Frauenheim T, Seifert G, Elstner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S, Scholz R (2000) A self-consistent charge density functional based tight binding method for predictive materials simulations in physics, chemistry, and biology. Phys Stat Sol B 217:41

    Article  CAS  Google Scholar 

  19. Gaus M, Cui Q, Elstner M (2014) Density functional tight binding: application to organic and biological molecules. WIREs Comput Mol Sci 4:49–61

    Article  CAS  Google Scholar 

  20. Holian BL (1995) Atomistic computer-simulations of shock-waves. Shock Waves 5:149

    Article  Google Scholar 

  21. Holian BL, Lomdahl PS (1998) Plasticity induced by shock waves in nonequilibrium molecular dynamics simulations. Science 280:2085

    Article  CAS  Google Scholar 

  22. Holian BL, Straub GK (1979) Molecular-dynamics of shock-waves in 3-dimensional solids—transition from nonsteady to steady waves in perfect crystals and implications for the Rankine–Hugoniot conditions. Phys Rev Lett 43:1598–1600

    Article  CAS  Google Scholar 

  23. Holmes NC, Otani G, McCandless P, Rice SF (1990) Absorption spectroscopy of shocked benzene. In: Proceedings of the ninth international symposium on detonation, p 190

    Google Scholar 

  24. Joshi KL, Raman S, van Duin ACT (2013) Connectivity-based parallel replica dynamics for chemically reactive systems: from femtoseconds to microseconds. J Phys Chem Lett 4:3792–3797

    Article  CAS  Google Scholar 

  25. Koskinen P, Mäkinen V (2009) Density-functional tight-binding for beginners. Comput Mater Sci 47:237

    Article  CAS  Google Scholar 

  26. Krishnapriyan A, Yang P, Niklasson AMN, Cawkwell MJ (2017) Numerical optimization of density functional tight binding models: application to molecules containing carbon, hydrogen, nitrogen, and oxygen. J Chem Theory Comput, p 6191

    Google Scholar 

  27. Kum O, Dickson BR, Stuart SJ, Uberuaga BP, Voter AF (2004) Parallel replica dynamics with a heterogeneous distribution of barriers: application to n-hexadecane pyrolysis. J Chem Phys 121:9808

    Article  CAS  Google Scholar 

  28. Lacina D, Gupta YM (2013) Temperature measurements and an improved equation of state for shocked liquid benzene. J Chem Phys 138:174506

    Article  CAS  Google Scholar 

  29. Maillet JB, Mareschal M, Soulard L, Ravelo R, Lomdahl PS, Germann TC, Holian BL (2001) Uniaxial Hugoniostat: a method for atomistic simulations of shocked materials. Phys Rev E 63:016121

    Article  CAS  Google Scholar 

  30. Maillet JB, Pineau N (2008) Thermodynamic properties of benzene under shock conditions. J Chem Phys 128:224502

    Article  Google Scholar 

  31. Manaa MR, Fried LE, Reed EJ (2003) Explosive chemistry: simulating the chemistry of energetic materials at extreme conditions. J Comput Aided Mater Des 10:75–97

    Google Scholar 

  32. Martínez E, Cawkwell MJ, Voter AF, Niklasson AMN (2015) Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics. J Chem Phys 142:154120

    Article  Google Scholar 

  33. Nellis WJ, Ree FH, Trainor RJ, Mitchell AC, Boslough MB (1984) Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 mbar). J Chem Phys 80:2789

    Google Scholar 

  34. Niklasson AMN (2008) Extended Born-Oppenheimer molecular dynamics. Phys Rev Lett 100:123004

    Article  Google Scholar 

  35. Niklasson AMN, Steneteg P, Odell A, Bock N, Challacombe M, Tymczak CJ, Holmström E, Zheng G, Weber V (2009) Time-reversible Born-Oppenheimer molecularu dynamics with dissipation. J Chem Phys 130:214109

    Article  Google Scholar 

  36. Niklasson AMN, Tymczak CJ, Challacombe M (2006) Time-reversible Born-Oppenheimer molecular dynamics. Phys Rev Lett 97:123001

    Article  Google Scholar 

  37. Niklasson AMN, Tymczak CJ, Challacombe M (2007) Time-reversible ab initio molecular dynamics. J Chem Phys 126:144103

    Article  Google Scholar 

  38. Perez D, Uberuaga BP, Voter AF (2015) The parallel replica dynamics method—coming of age. Comput Mater Sci 100:90–103

    Article  CAS  Google Scholar 

  39. Pulay P, Fogarasi G (2004) Fock matrix dynamics. Chem Phys Lett 386:272

    Article  CAS  Google Scholar 

  40. Quenneville J, Germann TC (2009) A quantum chemistry study of Diels-Alder dimerizations in benzene and anthracene. J Chem Phys 131:024313

    Article  Google Scholar 

  41. Ravelo R, Holian BL, Germann TC, Lomdahl PS (2004) Constant stress Hugoniostat. Phys Rev B 70:014103

    Article  Google Scholar 

  42. Reed EJ, Fried LE, Joannopoulos JD (2003) A method for tractable dynamical studies of single and double shock compression. Phys Rev Lett 90:235503

    Article  Google Scholar 

  43. Root S, Gupta YM (2009) Chemical changes in liquid benzene multiply shock compressed to 25 GPa. J Phys Chem A 113:1268

    Article  CAS  Google Scholar 

  44. Seifert G, Joswig JO (2012) Density-functional tight binding-an approximate density-functional theory method. WIREs Comput Mol Sci 2:456–465

    Article  CAS  Google Scholar 

  45. Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498

    Article  CAS  Google Scholar 

  46. Strachan A, van Duin ACT, Chakraborty D, Dasgupta S, Goddard WA (2003) Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys Rev Lett 91:098301

    Article  Google Scholar 

  47. Tsai DH, Beckett CW (1966) Shock wave propagation in cubic lattices. J Geophys Res 71:2601

    Article  CAS  Google Scholar 

  48. Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57:13985–13988

    Article  Google Scholar 

  49. Walsh JM, Rice MH (1957) Dynamic compression of liquids from measurements on strong shock waves. J Chem Phys 26:815

    Article  CAS  Google Scholar 

  50. Wang C, Zhang P (2010) The equation of state and nonmetal-metal transition in benzene under shock compression. J Appl Phys 107:083502

    Article  Google Scholar 

  51. Wood MA, Cherukara MJ, Kober EM, Strachan A (2015) Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale. J Phys Chem C 119:22008–22015

    Article  CAS  Google Scholar 

  52. Yakusheva OB, Yakushev VV, Dremin AN (1971) The opacity mechanism of shock-compressed organic liquids. High Temp. High Press 3:261

    Google Scholar 

  53. Zheng G, Niklasson AMN, Karplus M (2011) Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. J Chem Phys 135:044122

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory. We thank Josh Coe, Dana Dattelbaum, Shawn McGrane, Anders Niklasson, Danny Perez, Kyle Ramos, and Art Voter for many illuminating discussions over the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Cawkwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, E., Kober, E.M., Cawkwell, M.J. (2019). Accelerated Molecular Dynamics Simulations of Shock-Induced Chemistry: Application to Liquid Benzene. In: Goldman, N. (eds) Computational Approaches for Chemistry Under Extreme Conditions. Challenges and Advances in Computational Chemistry and Physics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-05600-1_3

Download citation

Publish with us

Policies and ethics