Skip to main content

Computational Discovery of New High-Nitrogen Energetic Materials

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 28))

Abstract

High-nitrogen-content energetic compounds containing multiple N–N bonds are an attractive candidate for new generation of environmentally friendly, and more powerful energetic materials. High-N content translates into much higher heat of formation resulting in much larger energy output, detonation pressure, and velocity upon conversion to large amounts of non-toxic, strongly bonded \(\text {N}_{2}\) gas. This chapter describes recent advances in the computational discovery of a new family of polynitrogen pentazolate compounds using powerful first-principles evolutionary crystal structure prediction methods. After description of the methodology of the first-principles crystal structure prediction, several new high-nitrogen-content energetic compounds are described. In addition to providing information on structure and chemical composition, theory/simulations also suggests specific precursors, and experimental conditions that are required for experimental synthesis of such high-N pentazolate energetic materials. To aid in experimental detection of newly synthesized compounds, XRD patterns and corresponding Raman spectra are calculated for several candidate structures. The ultimate success was achieved in joint theoretical and experimental discovery of cesium pentazolate, which was synthesized by compressing and heating cesium azide \(\text {CsN}_{3}\) and \(\text {N}_{2}\) precursors in diamond anvil cell. This success story highlights the key role of first-principles structure prediction simulations in guiding experimental exploration of new high-N energetic materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Klapötke TM (2015) Chemistry of high-energy materials. De Gruyter, Berlin, München, Boston

    Book  Google Scholar 

  2. Nobel A (1868) Improved explosive compound. US Patent 78,317

    Google Scholar 

  3. Christe K (2007) Propellants Explos Pyrotech 32(3):194

    Google Scholar 

  4. Mailhiot C, Yang L, McMahan A (1992) Phys Rev B 46(22):14419

    Article  CAS  Google Scholar 

  5. Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Nat Mat 3(8):558

    Article  CAS  Google Scholar 

  6. Eremets MI, Gavriliuk AG, Trojan IA (2007) Appl Phys Lett 90(17):171904

    Article  Google Scholar 

  7. Gregoryanz E, Goncharov AF, Sanloup C, Somayazulu M, Mao Hk, Hemley RJ (2007) J Chem Phys 126(18):184505

    Google Scholar 

  8. Lipp M, Klepeis J, Baer B, Cynn H, Evans W, Iota V, Yoo CS (2007) Phys Rev B 76(1):014113

    Article  Google Scholar 

  9. Maddox J (1988) Nature 335(6187):201

    Article  Google Scholar 

  10. Oganov AR, Glass CW (2006) J Chem Phys 124(24):244704

    Article  Google Scholar 

  11. Pickard CJ, Needs RJ (2011) J Phys Cond Matt 23(5):053201

    Article  Google Scholar 

  12. Zhu Q, Oganov AR, Zhou XF (2014) Top Curr Chem 345:223

    Article  CAS  Google Scholar 

  13. Wang Y, Lv J, Zhu L, Ma Y (2012) Comput Phys Commun 183(10):2063

    Article  CAS  Google Scholar 

  14. Ma Y, Oganov A, Li Z, Xie Y, Kotakoski J (2009) Phys Rev Lett 102(6):100

    Article  Google Scholar 

  15. Tomasino D, Kim M, Smith J, Yoo CS (2014) Phys Rev Lett 113:205502

    Article  Google Scholar 

  16. Zhang W, Oganov AR, Goncharov AF, Zhu Q, Boulfelfel SE, Lyakhov AO, Stavrou E, Somayazulu M, Prakapenka VB, Konôpková Z (2013) Science 342(6165):1502

    Article  CAS  Google Scholar 

  17. Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T (2014) Sci Rep 4:6968

    Article  CAS  Google Scholar 

  18. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI (2015) Nature 525(7567):73

    Article  CAS  Google Scholar 

  19. Oganov AR, Chen J, Gatti C, Ma Y, Ma Y, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Nature 457

    Google Scholar 

  20. Kraus W, Nolze G (1996) J Appl Crystallogr 29(3):301

    Article  CAS  Google Scholar 

  21. Momma K, Izumi F (2011) J Appl Crystallogr 44(6):1272

    Article  CAS  Google Scholar 

  22. Huisgen R, Ugi I (1957) Chem Ber 90(12):2914

    Article  CAS  Google Scholar 

  23. Clusius K, Hurzeler H (1954) Helvetica Chimica Acta 37(3):798

    Article  CAS  Google Scholar 

  24. Wallis JD, Dunitz JD (1983) J Chem Soc Chem Commun (16):910

    Google Scholar 

  25. Ferris KF, Bartlett RJ (1992) J Am Chem Soc 114(21):8302

    Article  CAS  Google Scholar 

  26. Butler RN (1996) In: Katritzky AR, Rees CW, Scriven EF (eds) Comprehensive heterocyclic chemistry II. Elsevier, New York, pp 897–904

    Google Scholar 

  27. Ugi I (1984) In: Katritzky AR, Ree (eds) Comprehensive heterocyclic chemistry I. Elsevier, New York, pp 839–845

    Google Scholar 

  28. Burke LA, Butler RN, Stephens JC (2001) J Chem Soc Perkin Trans 2(9):1679

    Google Scholar 

  29. Janoschek R (1993) Angew Chem Int Ed 32(2):230

    Article  Google Scholar 

  30. Nguyen MT, Ha TK (2001) Chem Phys Lett 335:311

    Article  CAS  Google Scholar 

  31. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Angew Chem 141(16):3177

    Article  Google Scholar 

  32. Östmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, Yudina L (2003) Chem Phys Lett 379(5–6):539

    Article  Google Scholar 

  33. Evans BL, Yoffe AD, Gray P (1959) Chem Rev 59(4):515

    Article  CAS  Google Scholar 

  34. Peiris SM, Russell TP (2003) J Phys Chem A 107:944

    Article  CAS  Google Scholar 

  35. Eremets MI, Popov MY, Trojan IA, Denisov VN, Boehler R, Hemley RJ (2004) J Chem Phys 120(22):10618

    Article  CAS  Google Scholar 

  36. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed 40(16):2947

    Article  Google Scholar 

  37. Cacace F, de Petris G, Troiani A (2002) Science 295:480

    Article  CAS  Google Scholar 

  38. Steele BA, Oleynik II (2016) Chem Phys Lett 643:21

    Article  CAS  Google Scholar 

  39. Steele BA, Stavrou E, Crowhurst JC, Zaug JM, Prakapenka VB, Oleynik II (2017) Chem Mater 29(2):735

    Article  CAS  Google Scholar 

  40. Steele BA, Oleynik II (2017) J Phys Chem A 121:1808

    Article  CAS  Google Scholar 

  41. Steele BA, Landerville AC, Oleynik II (2014) J Phys Conf Ser 500(16):162005

    Article  Google Scholar 

  42. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  43. Kresse G, Furthmiiller J (1996) Comput Mat Sci 6(1):15

    Article  CAS  Google Scholar 

  44. Zhang M, Yin K, Zhang X, Wang H, Li Q, Wu Z (2013) Solid State Commun 161:13

    Article  CAS  Google Scholar 

  45. Millar DIA, Barry C, Marshall WG, Pulham CR (2014) Z Kristallogr 229(3):259

    Google Scholar 

  46. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207

    Article  CAS  Google Scholar 

  47. Schimka L, Harl J, Kresse G (2011) J Chem Phys 134(2):024116

    Article  Google Scholar 

  48. Morino Y, Ijima T, Murata Y (1960) Bull Chem Soc Jpn 33(1):46

    Article  CAS  Google Scholar 

  49. Carlotti M, Johns JWC, Trombetti A (1974) Can J Phys 52(4):340

    Article  CAS  Google Scholar 

  50. Grimme S (2006) J Comput Chem 27(15):1787

    Article  CAS  Google Scholar 

  51. Takemura K, Christensen N, Novikov D, Syassen K, Schwarz U, Hanfland M (2000) Phys Rev B 61(21):14399

    Article  CAS  Google Scholar 

  52. Peng F, Yao Y, Liu H, Ma Y (2015) J Phys Chem Lett 6(12):2363

    Article  CAS  Google Scholar 

  53. Peng F, Han Y, Liu H, Yao Y (2015) Sci Rep 5:16902

    Article  CAS  Google Scholar 

  54. Shen Y, Oganov AR, Qian G, Zhang J, Dong H, Zhu Q, Zhou Z (2015) Sci Rep 5:14204

    Article  Google Scholar 

  55. Wiberg E (2001) Inorganic chemistry. Academic Press

    Google Scholar 

  56. Stevenson DJ (1975) Nature 258(5532):222

    Article  CAS  Google Scholar 

  57. Bernal MFM, Massey HSW (1954) Mon Not Roy Astron Soc 114(2):172

    Article  CAS  Google Scholar 

  58. Goncharov AF, Holtgrewe N, Qian G, Hu C, Oganov AR, Somayazulu M, Stavrou E, Pickard CJ, Berlie A, Yen F, Mahmood M, Lobanov SS, Konôpková Z, Prakapenka VB (2015) J Chem Phys 142(21):214308

    Article  Google Scholar 

  59. Wang H, Eremets MI, Troyan I, Liu H, Ma Y, Vereecken L (2015) Sci Rep 5:13239

    Article  CAS  Google Scholar 

  60. Yin K, Wang Y, Liu H, Peng F, Zhang L (2015) J Mater Chem A 3(8):4188

    Article  CAS  Google Scholar 

  61. Spaulding DK, Weck G, Loubeyre P, Datchi F, Dumas P, Hanfland M (2014) Nat Commun 5:5739

    Article  CAS  Google Scholar 

  62. Crowhurst JC, Zaug JM, Radousky HB, Steele BA, Landerville AC, Oleynik II (2014) J Phys Chem A 118(38):8695

    Article  CAS  Google Scholar 

  63. Hu A, Zhang F (2011) J Phys Cond Matt 23(2):022203

    Article  Google Scholar 

  64. Qian GR, Niu H, Hu CH, Oganov AR, Zeng Q, Zhou HY (2016) Sci Rep 6:25947

    Article  CAS  Google Scholar 

  65. Medvedev S, Eremets M, Evers J, Klapotke T, Palasyuk T, Trojan I (2011) Chem Phys 386(1–3):41

    Article  CAS  Google Scholar 

  66. Evers J, Gobel M, Krumm B, Martin F, Medvedyev S, Oehlinger G, Steemann FX, Troyan I, Klap TM, Eremets MI (2011) J Am Chem Soc 133:12100

    Article  CAS  Google Scholar 

  67. Pickard CJ, Needs RJ (2007) Nat Phys 3(7):473

    Article  CAS  Google Scholar 

  68. Chellappa R, Dattelbaum D, Daemen L, Liu Z (2014) J Phys Conf Ser 500:052008

    Article  Google Scholar 

  69. Yu H, Duan D, Tian F, Liu H, Li D, Huang X, Liu Y, Liu B, Cui T (2015) J Phys Chem C 119(45):25268

    Article  CAS  Google Scholar 

  70. Bazanov B, Geiger U, Carmieli R, Grinstein D, Welner S, Haas Y (2016) Ang Chem 1–4

    Google Scholar 

  71. Xu Y, Wang Q, Shen C, Lin Q, Wang P, Lu M (2017) Nature 549(7670):78

    Article  CAS  Google Scholar 

  72. Zhang C, Sun C, Hu B, Yu C, Lu M (2017) Science 355(6323)

    Google Scholar 

  73. Zhang C, Yang C, Hu B, Yu C, Zheng Z, Sun C (2017) Angew Chem Int Ed 56(16):4512

    Article  CAS  Google Scholar 

  74. Zhang C, Sun C, Hu B, Lu M (2017) Science 355:374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan I. Oleynik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steele, B.A., Oleynik, I.I. (2019). Computational Discovery of New High-Nitrogen Energetic Materials. In: Goldman, N. (eds) Computational Approaches for Chemistry Under Extreme Conditions. Challenges and Advances in Computational Chemistry and Physics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-05600-1_2

Download citation

Publish with us

Policies and ethics