Skip to main content

Function Spaces with Respect to the Gaussian Measure

  • Chapter
  • First Online:
Gaussian Harmonic Analysis

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1143 Accesses

Abstract

One of the main goals of functional spaces is to interpret and quantify the smoothness of functions. In this chapter, we discuss the analogs of classical functional spaces with respect to the Gaussian measure. We see that almost all classical spaces with respect to the Lebesgue measure have an analog for the Gaussian measure; nevertheless, we see that in some cases, for instance, Hardy spaces, the analogs to classical spaces are still incomplete and/or imperfect. On the other hand, most of the time, even if the spaces look similar, most of the proofs are different, mainly because the Gaussian measure is not invariant by translation, which implies the need for completely different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [231], the spaces are defined as completions of \(C_{0} ^{\infty }(\mathbb {R}^d)\). This unfortunate mistake was pointed out in [232]. These spaces, just like other Hardy spaces associated with an operator L, can only be defined on the range of L (where the reproducing formula holds in a L 1 sense). In other situations, this is only a minor technical hindrance. For the Ornstein–Uhlenbeck operator, however, this is critical because of the change of spectrum at p = 1.

  2. 2.

    Actually, Theorem 4.43 gives a slightly stronger inequality involving \(\Upsilon ^{\ast }_\gamma (1,a'),\) the “average” non-tangential maximal function.

  3. 3.

    Also, we obtain the same space with an equivalent norm if instead of \(\mathcal {P}_a,\) we consider \(\mathcal {P}_a\) the admissible cubes of parameter a, i.e., the cubes Q with sides parallel to the axes , with a center at c q and a side length l q ≤ am(cQ).

References

  1. T. Adamowicz, P. Harjulehto, P. Hästö. Maximal Operator in Variable Exponent Lebesgue Spaces on Unbounded Quasimetric Measure Space. Math. Scand. 116 (2015), no. 1, 5–22.

    Article  MathSciNet  Google Scholar 

  2. P. Auscher, A. McIntosh, E. Russ, Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds. J. Geom. Anal. 18 (2008) 192–248.

    Article  MathSciNet  Google Scholar 

  3. T. Bruno Endpoint Results for the Riesz Transform of the Ornstein–Uhlenbeck Operator. Pre-print. arxiv.org/abs/1801.07214

    Google Scholar 

  4. P. L. Butzer, H. Berens Semi-groups of operators and approximation. Die Grundkehren der mathematischen Wissenschaften, Ban145. Springer. New York, (1967)

    Google Scholar 

  5. L. Cafarelli Sobre la conjugación y sumabilidad de series de Jacobi. Ph.D. thesis. Universidad de Buenos Aires, Argentina (1971).

    Google Scholar 

  6. R. R. Coifman, Y. Meyer, E. M Stein Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62 (1985), 304–335. MR791851 (86i:46029)

    Article  MathSciNet  Google Scholar 

  7. R. R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569–645. MR0447954 (56:264)

    Article  MathSciNet  Google Scholar 

  8. D. Cruz-Uribe & A. Fiorenza Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkhäuser. Springer-Verlag. Heidelberg (2013).

    Google Scholar 

  9. E. Dalmasso & R. Scotto Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integral Transforms and Special Functions, 28:5, 403–420, DOI: 10.1080/10652469.2017.1296835

    Article  MathSciNet  Google Scholar 

  10. L. Diening, P. Harjulehto, P. Hästö and M. Růz̆ic̆ka.Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, Vol. 2017 Springer, Heidelberg (2011).

    Book  Google Scholar 

  11. J. Epperson Triebel–Lizorkin spaces for Hermite expansions. Studia Math, 114 (1995),199–209.

    Article  MathSciNet  Google Scholar 

  12. C. Fefferman, Characterizations of Bounded Mean Oscillation Bull. Amer. Math. Soc. 77 (1971) 587–588.

    Article  MathSciNet  Google Scholar 

  13. C. Fefferman, E. M. Stein H pspaces of several variables. Acta Math. 129 (1972) 137–193.

    Article  MathSciNet  Google Scholar 

  14. G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, B. Viviani Pointwise convergence to initial data of heat and Laplace equations, Trans. Amer. Math. Soc. 368 (2006), no.9, 6575–6600. MR3461043

    Article  MathSciNet  Google Scholar 

  15. A. E. Gatto, W. Urbina On Gaussian Lipschitz spaces and the boundedness of Fractional Integrals and Fractional Derivatives on them. (with A. Eduardo Gatto). Quaest. Math. 38 (2015), no. 1, 1–25. arXiv:0911.3962

    Article  MathSciNet  Google Scholar 

  16. G. Geiss, A. Toivola On Fractional Smoothness and L p– Approximation on the Gaussian Space. Annals of Prob. (2015), Vol. 43, No. 2, 605–638. DOI: 10.1214/13-AOP884

    Article  MathSciNet  Google Scholar 

  17. P. Graczyk, J. J. Loeb, I. López, A. Nowak, W. Urbina Higher order Riesz transforms, Fractional differentiation and Sobolev spaces for Laguerre expansions. J. Math. Pures Appl. (9). 84 (2005), no. 3, 375–405.

    Google Scholar 

  18. S. Hofmann, S. Mayboroda Hardy and BMO spaces associated with divergence form elliptic operators. Math Ann 344 (2009) 37–116.

    Article  MathSciNet  Google Scholar 

  19. F. John and L. Nirenberg On functions of bounded mean oscillation. Comm. Pure Appl. Math 14 (1961) 415–426.

    Article  MathSciNet  Google Scholar 

  20. A. Jonsson and H. Wallin, Function spaces on subsets of R n , Harwood Acad. Publ., London,(1984).

    MATH  Google Scholar 

  21. P. Kunstmann, A. Ullmann \(\mathcal {R}_s\)-Sectorial Operators and generalized Triebel–Lizorkin Spaces. J. Fourier Anal. Appl, (2014), Vol 20, 1, 135–185.

    Google Scholar 

  22. Z. K. Li Conjugated Jacobi Series and Conjugated Functions. J. Approx Theory, 86, 179–196 (1996).

    Article  MathSciNet  Google Scholar 

  23. Z. K. Li Hardy spaces for Jacobi expansions. Analysis, 16, 27–49 (1996).

    Article  MathSciNet  Google Scholar 

  24. L. Liu, P. Sjögren A characterization of the Gaussian Lipschitz space and sharp estimates for the Ornstein-Uhlenbeck Poisson kernel Revista Mat. Iberoam. 32 (2016), no. 4, 1189–1210.

    Google Scholar 

  25. L. Liu, P. Sjögren, On the global Gaussian Lipschitz space Proc. Edinb. Math. Soc. 60 (2017), 707–720.

    Article  MathSciNet  Google Scholar 

  26. L. Liu, D. Yang BLO spaces associated with the Ornstein–Uhlenbeck operator. Bull. Sci. Math. 132 (2008), 633–649. MR2474485 (2010c:42045)

    Article  MathSciNet  Google Scholar 

  27. I. López, Introduction to the Besov Spaces and Triebel–Lizorkin Spaces for Hermite and Laguerre expansions and some applications. J. Math Stat. 1 (2005), no. 3, 172–179.

    Article  MathSciNet  Google Scholar 

  28. J. Maas, J. van Neerven, P. Portal Non-tangential maximal functions and conical square functions with respect to the gaussian measure. Publ. Mat. 55 (2011), no. 2, 313–341. MR2839445 arXiv:1003.4092.

    Google Scholar 

  29. J. Maas, J. van Neerven, P. Portal Whitney coverings and the tent spaces T 1, q(γ) for the Gaussian measure. Ark. Mat. 50 no.2 (2012) 379–395. arXiv:1002.4911v1

    Article  MathSciNet  Google Scholar 

  30. R. Macías, Interpolation theorems on generalized Hardy spaces. Ph.D. thesis, Washington University, (1974).

    Google Scholar 

  31. P. Malliavin, H. Airault Intégration, Analyse of Fourier, Probabilités, Analyse Gaussienne. Collection Maitrise de Mathematiques Pures. Mason. Paris (1994).

    Google Scholar 

  32. C. Markett The Product Formula and Convolution Structure associated with generalized Hermite Polynomials. J. Approx. Theory. 73 (1993), 199–217.

    Article  MathSciNet  Google Scholar 

  33. G. Mauceri, S. Meda BMO and H 1for the Ornstein–Uhlenbeck operator. J. Funct. Anal. 252 (2007), no. 1, 278–313. MR 2357358 (2008m:42024)

    Google Scholar 

  34. G. Mauceri, S. Meda, P. Sjögren Endpoint estimates for first-order Riesz transforms associated to the Ornstein–Uhlenbeck operator., Studia Math. 224 (2014), no. 2, 153–168.

    Article  MathSciNet  Google Scholar 

  35. G. Mauceri, S. Meda, P. Sjögren A Maximal Function Characterization of the Hardy Space for the Gauss Measure. Proc Amer. Math Soc. 141, 5 (2013) 1679–1692.

    Article  MathSciNet  Google Scholar 

  36. G. Mauceri, S. Meda, M. Vallarino Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds. Studia Math. 224 (2014) no. 2, 864–891.

    Article  MathSciNet  Google Scholar 

  37. J. Moreno, E. Pineda & W. Urbina On the Ornstein–Uhlenbeck semigroup on variable L pGaussian spaces and related operators. pre-print.

    Google Scholar 

  38. B. Muckenhoupt, E. M.Stein Classical Expansions. Trans. Amer. Math. Soc. 147 (1965) 17–92.

    Article  Google Scholar 

  39. D. Nualart The Malliavin Calculus and Related Topics. 2nd edition. Probability and its Applications (New York). Springer, Berlin, 2006

    Google Scholar 

  40. E. Pineda Tópicos en Análisis Armónico Gaussiano: Comportamiento en la frontera y espacios de funciones para la medida Gaussiana.. PhD thesis, Facultad de Ciencias, UCV, Caracas. (2009).

    Google Scholar 

  41. E. Pineda, W. Urbina Some results on Gaussian Besov–Lipschitz spaces and Gaussian Triebel–Lizorkin spaces. Journal of Approximation Theory, Volume 161, Issue 2, December (2009), 529–564.

    Google Scholar 

  42. P. Portal Maximal and quadratic Gaussian Hardy spaces. 2012. Rev. Mat. Iberoam. 30 (2014), no. 1, 79–108 arXiv:1203.1998.

    Google Scholar 

  43. Personal communication 2018.

    Google Scholar 

  44. E. M. Stein Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press. Princeton (1970) .

    Google Scholar 

  45. H. Sugita On characterization of the Sobolev spaces over abstract Wiener spaces. J. Math Kioto Univ. 25-5 (1985) 717–725.

    Article  MathSciNet  Google Scholar 

  46. G. Szegő Orthogonal Polynomials. Colloq. Publ. 23. Amer. Math. Soc. Providence (1959).

    Google Scholar 

  47. S. J. Taylor, Introduction to Measure and Integration. Cambridge University Press, London (1966).

    Google Scholar 

  48. H. Triebel Interpolation theory, function spaces differential operators. North Holland (1978).

    Google Scholar 

  49. X. Tolsa BMO, H 1, and Calderón–Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89–149.

    Article  MathSciNet  Google Scholar 

  50. S. Watanabe Lecture on Stochastic Differential Equations and Malliavin Calculus. Tata Inst. Fund. Res., Mumbai. Springer (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urbina-Romero, W. (2019). Function Spaces with Respect to the Gaussian Measure. In: Gaussian Harmonic Analysis. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-05597-4_7

Download citation

Publish with us

Policies and ethics