Skip to main content

Spectral Multiplier Operators with Respect to the Gaussian Measure

  • Chapter
  • First Online:
Book cover Gaussian Harmonic Analysis

Abstract

In this chapter, we study spectral multiplier operators for Hermite polynomial expansions. First, we consider Meyer’s multiplier theorem, which is one of the most basic and most useful results for Hermite expansions. Then, we consider spectral multipliers of Laplace transform type. In both cases, we prove their boundedness in L p(γ d), for 1 < p < . For the case of spectral multipliers of Laplace transform type, we also study the boundedness in the case p = 1. Finally, we discuss the fact that the Ornstein–Uhlenbeck operator has a bounded holomorphic functional calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formally speaking, it should be denoted by m(−L) because of (2.7); for simplicity we just write it as m(L).

  2. 2.

    Alternatively, we could define m(L) on the set of polynomials in d-variables, \({\mathcal P}(\mathbb R^d),\) as they have finite Hermite expansion \(f = \sum _{k=0}^\infty {\mathbf {J}}_k f = \sum _{k=0}^\infty \sum _{|\alpha |= k} \langle f, {\mathbf {h}}_{\nu } \rangle _{\gamma _d} {\mathbf {h}}_{\nu }.\)

  3. 3.

    In fact, nowadays this theorem is known as Stein’s universal multiplier theorem.

References

  1. W. Beckner Inequalities in Fourier Analysis. Ann. Math. 102 (1975) 159–182.

    Article  MathSciNet  Google Scholar 

  2. A. Carbonaro, O. Dragicević Functional Calculus for Generators of Symmetric Contraction Semigroups Duke Math. J. 166 937–974 (2017) arXiv:1308.1338v2

    Article  MathSciNet  Google Scholar 

  3. T. S. Chihara, Generalized Hermite Polynomials Ph.D. thesis, Purdue (1955).

    Google Scholar 

  4. M. R. Cowling Harmonic Analysis on Semigroups. Annals of Math, Second Series, Vol. 251, (1979), 219–234.

    Google Scholar 

  5. M. R. Cowling & S. Meda Harmonic Analysis and Ultracontractivity. Trans Amer. Math Soc. 340 (1993), 733–752.

    Article  MathSciNet  Google Scholar 

  6. J. García-Cuerva, G. Mauceri, P. Sjögren, J. L. Torrea Spectral multipliers for the Ornstein–Uhlenbeck semigroup. J. Anal. Math. 78 (1999), 281–305. MR1714425 (2000m:42015)

    Article  MathSciNet  Google Scholar 

  7. J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren, J. L. Torrea Functional calculus for the Ornstein–Uhlenbeck operator. J. Funct. Anal. 183 (2001), no. 2, 413–450. MR1844213 (2002d:47023)

    Google Scholar 

  8. P. Graczyk, J. J. Loeb, I. López, A. Nowak, W. Urbina Higher order Riesz transforms, Fractional differentiation and Sobolev spaces for Laguerre expansions. J. Math. Pures Appl. (9). 84 (2005), no. 3, 375–405.

    Google Scholar 

  9. W. Hebisch, G. Mauceri, S. Meda Holomorphy of spectral multipliers of the Ornstein–Uhlenbeck operator. J. Funct. Anal. 210 (2004), 101–124. MR2052115 (2005g:47024)

    Article  MathSciNet  Google Scholar 

  10. M. Kemppainen Admissible decomposition for spectral multipliers on Gaussian L p. arXiv:1608.03747

    Google Scholar 

  11. M. Kemppainen An L 1-estimate for certain spectral multipliers associated with the Ornstein Uhlenbeck operator. J. Fourier Anal. Appl, (to appear) (2016). arXiv:1508.06102

    Google Scholar 

  12. S. Meda A general multiplier theorem. Proc. Amer. Soc. 110 (1996) 639–647 .

    Article  MathSciNet  Google Scholar 

  13. P. A. Meyer Note sur les processus d’Ornstein–Uhlenbeck. Lectures Notes in Math 920 (1982) Springer 95–133. MR770960 (86i:60150)

    Google Scholar 

  14. B. Muckenhoupt Transplantation theorems and multiplier theorems for Jacobi series. Memoirs Amer. Math. Soc. 356 Providence (1986).

    Google Scholar 

  15. D. Nualart The Malliavin Calculus and Related Topics. 2nd edition. Probability and its Applications (New York). Springer, Berlin, 2006

    Google Scholar 

  16. P. Portal Maximal and quadratic Gaussian Hardy spaces. 2012. Rev. Mat. Iberoam. 30 (2014), no. 1, 79–108 arXiv:1203.1998.

    Google Scholar 

  17. E. Sasso Spectral Multipliers of Laplace Transform type for the Laguerre Operator. Bull. Austral. Math. Soc. Vol. 69 (2004) 255–266.

    Article  MathSciNet  Google Scholar 

  18. P. Sjögren On the maximal function for the Mehler kernel in: Mauceri G., Ricci F., Weiss G. (eds) Harmonic analysis (Cortona, 1982), Lectures Notes in Math vol 992. Springer, Berlin (1983) 73–82. MR729346 (85j:35031)

    Google Scholar 

  19. E. M. Stein Topics in Harmonic Analysis related to the Littlewood–Paley Theory. Princeton Univ. Press. Princeton (1970). MR0252961 (40:6176)

    Google Scholar 

  20. D. W. Stroock The Malliavin calculus, a functional analytic approach. J. Funct. Anal. 44, 212–257 (1981) MR 84d:60076.

    Google Scholar 

  21. S. Watanabe Lecture on Stochastic Differential Equations and Malliavin Calculus. Tata Inst. Fund. Res., Mumbai. Springer (1984).

    Google Scholar 

  22. F. Weissler Two-point Inequalities, the Hermite Semigroup, and the Gauss–Weierstrass Semigroup. J. Funct. Anal. 32 (1979) 102–121.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urbina-Romero, W. (2019). Spectral Multiplier Operators with Respect to the Gaussian Measure. In: Gaussian Harmonic Analysis. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-05597-4_6

Download citation

Publish with us

Policies and ethics