Skip to main content

Current Design with Minimum Error in Transcranial Direct Current Stimulation

  • Conference paper
  • First Online:
Brain Informatics (BI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Included in the following conference series:

  • 1131 Accesses

Abstract

As a non-invasive brain stimulation technology, transcanial direct current stimulation (tDCS) has been recently attracting more and more attention in research and clinic applications due to its convenient implementation and modulation of the brain functionality. In this paper, we propose a novel multi-electrode tDCS current configuration model that minimizes the total error under the safety constraints. After rewriting the model as a linearly constrained minimization problem, we develop an efficient numerical algorithm based on the alternating direction method of multipliers (ADMM). Numerical experiments have shown the great potential of the proposed method in terms of accuracy and focality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auvichayapat, N., et al.: Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul.: Basic Transl. Clin. Res. Neuromodul. 6(4), 696–700 (2013)

    Article  Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  3. Brunoni, A.R., et al.: The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. São Paulo Med. J. 133(3), 252–263 (2015)

    Article  Google Scholar 

  4. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \(l_1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Dmochowski, J.P., Datta, A., Bikson, M., Su, Y., Parra, L.C.: Optimized multi-electrode stimulation increases focality and intensity at target. J. Neural Eng. 8(4), 046011 (2011)

    Article  Google Scholar 

  6. Fregni, F., et al.: Noninvasive cortical stimulation with transcranial direct current stimulation in parkinson’s disease. Mov. Disord. 21(10), 1693–1702 (2006)

    Article  Google Scholar 

  7. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  8. Glowinski, R., Marrocco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par, penalisation-dualité, d’une classe de problems de dirichlet non lineares. Revue Française d’Automatique, Informatique, et Recherche Opéationelle 9, 41–76 (1975)

    Article  MATH  Google Scholar 

  9. Guler, S.: Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). J. Neural Eng. 13(3), 036020 (2016)

    Article  Google Scholar 

  10. Li, F., Osher, S., Qin, J., Yan, M.: A multiphase image segmentation based on fuzzy membership functions and L1-norm fidelity. J. Sci. Comput. 69(1), 82–106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1 (2011)

    Article  Google Scholar 

  12. Ruffini, G., Fox, M.D., Ripolles, O., Miranda, P.C., Pascual-Leone, A.: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage 89, 216–225 (2014)

    Article  Google Scholar 

  13. Sadleir, R., Vannorsdall, T.D., Schretlen, D.J., Gordon, B.: Target optimization in transcranial direct current stimulation. Front. Psychiatry 3, 90 (2012)

    Google Scholar 

  14. Woods, A.J., et al.: A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127(2), 1031–1048 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The research of Jing Qin is supported by the NSF grant DMS-1818374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, J., Wang, Y., Liu, W. (2018). Current Design with Minimum Error in Transcranial Direct Current Stimulation. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics