Skip to main content

Performance Analysis of Maximum Power Point Tracking (MPPT) for PV Systems Under Real Meteorological Conditions

  • Chapter
  • First Online:
Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, the performance of PV systems in terms of maximum power point tracking (MPPT) is studied under the effect of different metrological conditions. Due to the obscurity and lack of credible solar irradiation information, it is important to estimate solar irradiation on horizontal and inclined surfaces by the use of a mathematical model, which considers meteorological data of the location under study. The proposed approach to develop this model is to estimate the global solar radiation on the inclined PV array, then dividing it into its main components. Each of the major metrological conditions affects the PV system performance by affecting a particular component of the total irradiance reaching it. This is thoroughly analyzed in detail in the sections of this chapter, mainly for partial shading conditions, angle of incidence, air mass, and dust. After that, the effect of each of the metrological conditions is modeled associated with a particular component of the global irradiance. Then, an aggregated irradiance model incorporating the effects of all the major metrological conditions is developed to show the reductions in the received irradiance and the generated power. Lastly, this chapter proposes an improved maximum power point tracking (MPPT) algorithm with variable step size, which is suitable for multiple maximum power points occurring during partial shading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chueco-Fernández F, Bayod-Rújula Á (2010) Power supply for pumping systems in northern Chile: photovoltaics as alternative to grid extension and diesel engines. Energy 35(7):2909–2921

    Article  Google Scholar 

  2. Chandel S, Nagaraju Naik M, Chandel R (2015) Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renew Sustain Energy Rev 49:1084–1099

    Article  Google Scholar 

  3. Armanuos A, Negm A, Tahan A (2016) Life cycle assessment of diesel fuel and solar pumps in operation stage for rice cultivation in Tanta, Nile Delta, Egypt. Procedia Technol 22:478–485

    Article  Google Scholar 

  4. https://www.nrel.gov/docs/fy14osti/60272.pdf

  5. http://energy.sandia.gov/wp-content/gallery/uploads/Semprius_perf_model_final.pdf

  6. Seyedmahmoudian M, Mekhilef S, Rahmani R, Yusof R, Renani E (2013) Analytical modeling of partially shaded photovoltaic systems. Energies 6(1):128–144

    Article  Google Scholar 

  7. Styszko K, Jaszczur M, Teneta J, Hassan Q, Burzyńska P, Marcinek E, Łopian N, Samek L (2019) An analysis of the dust deposition on solar photovoltaic modules. Environ Scie Pollut Res 26(9):8393–8401

    Article  Google Scholar 

  8. Cano J (2012) Photovoltaic modules. Proquest, Umi Dissertatio

    Google Scholar 

  9. Mohammedi A, Mezzai N, Rekioua D, Rekioua T (2014) Impact of shadow on the performances of a domestic photovoltaic pumping system incorporating an MPPT control: a case study in Bejaia, North Algeria. Energy Convers Manag 84:20–29

    Article  Google Scholar 

  10. Zheng J, Chai Y, Zhu S, Shen X, Li J, Wang X (2013) The dynamic characteristics of photovoltaic generation system under partially shaded conditions. In: 2013 IEEE PES Asia-Pacific power and energy engineering conference (APPEEC), Kowloon, pp 1–4

    Google Scholar 

  11. Madziga M, Rahil A, Mansoor R (2018) Comparison between Three off-grid hybrid systems (solar photovoltaic, diesel generator and battery storage system) for electrification for Gwakwani village, South Africa. Environments 5(5):57

    Article  Google Scholar 

  12. Barrueto Guzmán A, Barraza Vicencio R, Ardila-Rey J, Núñez Ahumada E, González Araya A, Arancibia Moreno G (2018) A cost-effective methodology for sizing solar PV systems for existing irrigation facilities in Chile. Energies 11(7):1853

    Article  Google Scholar 

  13. El-Sebaii A, Trabea A (2003) Estimation of horizontal diffuse solar radiation in Egypt. Energy Convers Manag 44(15):2471–2482

    Article  Google Scholar 

  14. El-Sebaii A, Trabea A (2018). Estimation of horizontal diffuse solar radiation in Egypt

    Google Scholar 

  15. Trabea A, Shaltout M (2000) Correlation of global solar radiation with meteorological parameters over Egypt. Renew Energ 21(2):297–308

    Article  Google Scholar 

  16. https://ojs.cvut.cz/ojs/index.php/ap/article/view/1057

  17. Duffie J, Beckman W (2013) Solar engineering of thermal processes. Wiley, Hoboken

    Book  Google Scholar 

  18. Araneo R, Grasselli U, Celozzi S (2014) Assessment of a practical model to estimate the cell temperature of a photovoltaic module. Int J Energy Environ Eng 5(1)

    Google Scholar 

  19. https://www.ijert.org/phocadownload/V1I5/IJERTV1IS5008.pdf

  20. https://www.researchgate.net/publication/267200948_Solar_house_and_weather_factors_in_Bejaia_city_Algeria

  21. Engerer N (2011) Simulating photovoltaic array performance using radiation observations from the Oklahoma Mesonet (Doctoral dissertation, University of Oklahoma)

    Google Scholar 

  22. http://www.ijsrp.org/research-paper-1212/ijsrp-p1255.pdf

  23. Darhmaoui H, Lahjouji D (2013) Latitude based model for Tilt angle optimization for solar collectors in the Mediterranean region. Energy Procedia 42:426–435

    Article  Google Scholar 

  24. https://journals.squ.edu.om/index.php/tjer/article/download/113/125

  25. https://www.researchgate.net/publication/261173026_Population_Density_and_Area_weighted_Solar_Irradiation_global_Overview_on_Solar_Resource_Conditions_for_fixed_tilted_1-axis_and_2-axes_PV_Systems

  26. http://www.iwtc.info/wp-content/uploads/2011/07/G103.pdf

  27. Kibirige B (2018) Monthly average daily solar radiation simulation in northern KwaZulu-Natal: a physical approach. South African J Sci 114(9/10)

    Google Scholar 

  28. El-Saadawi M, Hassan A, Abo-Al-Ez K, Kandil M (2011) A proposed framework for dynamic modelling of photovoltaic systems for DG applications. Int J Ambient Energy 32(1):2–17

    Article  Google Scholar 

  29. Chin V, Salam Z, Ishaque K (2015) Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl Energy 154:500–519

    Article  Google Scholar 

  30. Chegaar M, Hamzaoui A, Namoda A, Petit P, Aillerie M, Herguth A (2013) Effect of illumination intensity on solar cells parameters. Energy Procedia 36:722–729

    Article  Google Scholar 

  31. Jena D, Ramana V (2015) Modeling of photovoltaic system for uniform and non-uniform irradiance: a critical review. Renew Sustain Energy Rev 52:400–417

    Article  Google Scholar 

  32. http://www.icrepq.com/icrepq’10/619-Hernanz.pdf

  33. http://www.eletrica.ufpr.br/graduacao/e-books/Principles%20Of%20Semiconductor%20Devices.pdf

  34. Altas IH, Sharaf AM (2007) A photovoltaic array simulation model for Matlab-Simulink GUI environment. In: 2007 international conference on clean electrical power, Capri, pp 341–345

    Google Scholar 

  35. Aissou S, Rekioua D, Mezzai N, Rekioua T, Bacha S (2015) Modeling and control of hybrid photovoltaic wind power system with battery storage. Energy Convers Manag 89:615–625

    Article  Google Scholar 

  36. Guechi A, Chegaar M, Aillerie M (2012) Environmental effects on the performance of nanocrystalline silicon solar cells. Energy Procedia 18:1611–1623

    Article  Google Scholar 

  37. Dubey S, Sarvaiya J, Seshadri B (2013) Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Procedia 33:311–321

    Article  Google Scholar 

  38. Bouraiou A, Hamouda M, Chaker A, Sadok M, Mostefaoui M, Lachtar S (2015) Modeling and simulation of photovoltaic module and array based on one and two diode model using Matlab/Simulink. Energy Procedia 74:864–877

    Article  Google Scholar 

  39. http://www.diva-portal.org/smash/get/diva2:754340/FULLTEXT01.pdf

  40. Guerrero J, Muñoz Y, Ibáñez F, Ospino A (2014) Analysis of mismatch and shading effects in a photovoltaic array using different technologies. In: IOP conference series: materials science and engineering, vol 59, p 012007

    Article  Google Scholar 

  41. Tian H, Mancilla-David F, Ellis K, Muljadi E, Jenkins P (2012) A cell-to-module-to-array detailed model for photovoltaic panels. Sol Energy 86(9):2695–2706

    Article  Google Scholar 

  42. https://archive-ouverte.unige.ch/unige:39174

  43. Shankar G, Mukherjee V (2015) MPP detection of a partially shaded PV array by continuous GA and hybrid PSO. Ain Shams Eng J 6(2):471–479

    Article  Google Scholar 

  44. http://www.rroij.com/open-access/global-maximum-power-point-trackingunder-partial-shading-condition-usingsepic-converter.php?aid=43234

  45. Goss B, Cole I, Betts T, Gottschalg R (2014) Irradiance modelling for individual cells of shaded solar photovoltaic arrays. Sol Energy 110:410–419

    Article  Google Scholar 

  46. Deline C, Dobos A, Janzou S, Meydbray J, Donovan M (2013) A simplified model of uniform shading in large photovoltaic arrays. Sol Energy 96:274–282

    Article  Google Scholar 

  47. Fialho L, Melicio R, Mendes V, Figueiredo J, Collares-Pereira M (2014) Effect of Shading on series solar modules: simulation and experimental results. Procedia Technol 17:295–302

    Article  Google Scholar 

  48. Martínez-Moreno F, Muñoz J, Lorenzo E (2010) Experimental model to estimate shading losses on PV arrays. Sol Energy Mater Sol Cells 94(12):2298–2303

    Article  Google Scholar 

  49. Perpiñán O (2012) Cost of energy and mutual shadows in a two-axis tracking PV system. Renew Energy 43:331–342

    Article  Google Scholar 

  50. Jang M, Choi J, Ko J, Mun J, Chung D (2010) Control of a novel PV tracking system considering the shadow influence. In: ICCAS 2010, Gyeonggi-do, pp 1229–1234

    Google Scholar 

  51. https://link.springer.com/chapter/10.1007%2F978-3-642-34396-4_15

  52. Maine T, Bell J (2008) Maximum power extraction from partially shaded PV arrays. In: Prasad D, Morrison G (eds) Proceedings of the 3rd international solar energy society conference, Asia Pacific Region, incorporating the 46th Australian New Zealand Solar Energy Society Conference (ISES-AP-08), 25–28 November, 2008, Australia, NSW, Sydney

    Google Scholar 

  53. Drif M, Pérez P, Aguilera J, Aguilar J (2008) A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems. Renew Energy 33(9):2048–2056

    Article  Google Scholar 

  54. https://solarprofessional.com/articles/design-installation/q-a-calculating-inter-row-spacing#.XBJ6wtszaiM

  55. Kaddah SS (2006) Genetic algorithm based optimal operation for photovoltaic systems under different fault criteria, In: Power systems conference MEPCON, vol 2, pp 556–561

    Google Scholar 

  56. https://link.springer.com/chapter/10.1007/978-1-4471-2467-2_11

  57. Li H, Kang K, Chen W, Zeng X (2016) Maximum power point tracking for PV array under partially shaded conditions based on glowworm swarm optimization algorithm. DEStech Transactions on Computer Science and Engineering, (ICTE)

    Google Scholar 

  58. Ishaque K, Salam Z (2013) A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sustain Energy Rev 19:475–488

    Article  Google Scholar 

  59. Photovoltaic module and array performance characterization methods for all system operating conditions (1996) Washington, DC: United States. Department of Energy. Office of Energy Efficiency and Renewable Energy

    Google Scholar 

  60. Knisely B, Janakeeraman SV, Kuitche J, TamizhMani G (2013) Validation of IEC 61853-2 standard (draft): angle of incidence effect on photovoltaic modules. In: 2013 IEEE 39th photovoltaic specialists conference (PVSC), Tampa, FL, pp 0675–0680

    Google Scholar 

  61. https://www.amazon.es/Preliminary-Investigation-Correcting-Variations-Spectrum/dp/1249131634

  62. https://www.irishellas.com/files/Analysis-of-dust-losses-in-photovoltaic-moules_2011.pdf

  63. Mostefaoui M, Ziane A, Bouraiou A, Khelifi S (2019) Effect of sand dust accumulation on photovoltaic performance in the Saharan environment: southern Algeria (Adrar). Environ Sci Pollut Res 26(1):259–268

    Article  Google Scholar 

  64. Abdelilah B, Mouna A, KouiderM’Sirdi N, El Hossain A (2018) Implementation of maximum power point tracking (MPPT) solar charge controller using Arduino. In: IOP Conference Series: Materials Science and Engineering, vol 353, p 012024

    Article  Google Scholar 

  65. Kamran M, Mudassar M, Fazal M, Asghar M, Bilal M, Asghar R (2018) Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system. J King Saud Univ Eng Sci

    Google Scholar 

  66. Ali A, Sayed M, Mohamed E (2018) Modified efficient perturb and observe maximum power point tracking technique for grid-tied PV system. Int J Electr Power Energy Syst 99:192–202

    Article  Google Scholar 

  67. Bendib B, Belmili H, Krim F (2015) A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems. Renew Sustain Energy Rev 45:637–648

    Article  Google Scholar 

  68. Harrag A, Messalti S (2015) Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew Sustain Energy Rev 49:1247–1260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Abo-Al-Ez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abo-Al-Ez, K.M., Kaddah, S.S., Diab, S., Abdraboh, EH. (2020). Performance Analysis of Maximum Power Point Tracking (MPPT) for PV Systems Under Real Meteorological Conditions. In: Eltamaly, A., Abdelaziz, A. (eds) Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-05578-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05578-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05577-6

  • Online ISBN: 978-3-030-05578-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics