Skip to main content

Green Synthesis of Iron Oxide Nanoparticles: Cutting Edge Technology and Multifaceted Applications

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

Iron oxide nanoparticles (NPs) have garnered immense research impetus in multiple domains over the years. Use of various plants (with compositional abundance of different bioactive components, acting as bioreductants/stabilizers/capping agents) for generation of iron oxide NPs has been one of the focal points of investigation in the realm of green nanotechnology. This chapter is an attempt to make the readers au courant with the research on phytogenesis of iron oxide NPs. The chapter is streamlined towards the discussion of general features of phytomediated preparations of iron oxide NPs, encompassing the exemplary endeavours made during the recent years. Highlights of applications of the phytogenerated iron oxide NPs in the niches of antimicrobial and anticancer therapy, catalysis, metal-ion adsorption and agriculture, amongst others, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmmad B, Leonard K, Islam MS, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013) Green synthesis of mesoporous hematite (a-Fe2O3) nanoparticles and their photocatalytic activity. Adv Powder Technol 24:160–167

    Article  CAS  Google Scholar 

  • Ali A, Zafar H, Zia M, UL Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Ruqeishi MS, Mohiuddin T, Al-Saadi LK (2016) Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.04.003

  • Awwad AM, Salem NM (2012) A green and facile approach for synthesis of magnetite nanoparticles. Nanosci Nanotechnol 2:208–213

    Article  CAS  Google Scholar 

  • Balamurughan MG, Mohanraj S, Kodhaiyolii S, Pugalenthi V (2014) Ocimum sanctum leaf extract mediated green synthesis of iron oxide nanoparticles: spectroscopic and microscopic studies. J Chem Pharma Sci Special Issue 4:201–204

    Google Scholar 

  • Barabadi H, Ovais M, Shinwari ZK, Saravanan M (2017) Anti-cancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev 10:285–314

    Article  CAS  Google Scholar 

  • Barreto JC, Trevisan MT, Hull WE, Erben G, Brito ESD, Pfundstein B, Würtele G, Spiegelhalder B, Owen RW (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L). J Agric Food Chem 56:5599–5610

    Article  CAS  PubMed  Google Scholar 

  • Barua S, Konwarh R, Mandal M, Gopalakrishnan R, Kumar D, Karak N (2013) Biomimetically prepared antibacterial, free radical scavenging poly(ethylene glycol) supported silver nanoparticles as Aedes albopictus larvicide. Adv Sci Eng Med 5:291–298

    Article  CAS  Google Scholar 

  • Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S (2018) Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl Phys A Mater Sci Process 124:363

    Article  CAS  Google Scholar 

  • Can HK, Kavlak S, ParviziKhosroshahi S, Güner A (2018) Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIO-NPs). Artif Cells Nanomed Biotechnol 46:421–431

    Article  CAS  PubMed  Google Scholar 

  • Carvalho SS, Carvalho NM (2017) Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. J Environ Manag 187:82–88

    Article  CAS  Google Scholar 

  • Daniel SK, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15:1319

    Article  CAS  Google Scholar 

  • Devi HS, Boda MA, Shah MA, Parveen S, Wani AH (2018) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth 1–8. https://doi.org/10.1515/gps-2017–0145

  • Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43:493–507

    Article  CAS  PubMed  Google Scholar 

  • Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peels extract. J Environ Health Sci Eng 13:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Kassas HY, Ghobrial MG (2017) Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against Oscillatoria simplicissima. Environ Sci Pollut Res 24(8):7837–7849

    Article  CAS  Google Scholar 

  • Esam JAK (2015) Green synthesis of magnetite iron oxide nanoparticles by using Al-Abbas’s (AS) hund fruit (Citrus medica) var. Sarcodactylis Swingle extract and used in Al-’alqami river water treatment. J Nat Sci Res 5:125–135

    Google Scholar 

  • Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan L, Lu Z, Cao D, Chen Z (2018) Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater Sci Eng 82:41–45

    Article  CAS  Google Scholar 

  • Groiss S, Selvaraj R, Thivaharan V, Vinayagam R (2016) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 1128:572–578

    Article  CAS  Google Scholar 

  • Hassan SS, Abdel-Shafy HI, Mansour MS (2018) Removal of pyrene and benzo (a) pyrene micropollutant from water via adsorption by green synthesized iron oxide nanoparticles. Adv Nat Sci Nanosci Nanotech 9:015006

    Article  Google Scholar 

  • Herlekar M, Siddhivinayak B (2015) Optimization of microwave assisted green synthesis protocol for iron oxide nanoparticles and its application for simultaneous removal of multiple pollutants from domestic sewage. Int J Adv Res 3:331–345

    CAS  Google Scholar 

  • Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesize iron oxide nanoparticles. Appl Phy A 91:241–246

    Article  CAS  Google Scholar 

  • Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804

    Article  CAS  PubMed  Google Scholar 

  • Husen A (2017) Gold Nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479

    Chapter  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irshad R, Tahira K, Li B, Ahmada A, Siddiquia AR, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobio B 170:241–246

    Article  CAS  Google Scholar 

  • Ivashchenko O, Gapiński J, Peplińska B, Przysiecka Ł, Zalewski T, Nowaczyk G, Jarek M, Marcinkowska-Gapińska A, Jurga S (2017) Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: characterization, biomedical potential and microstructure analysis of hydrocolloids. Mater Des 133:307–324

    Article  CAS  Google Scholar 

  • Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad SEB, Kalantari K, Taib SHM, Rasouli E (2018) Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2018.02.019

  • Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189

    Article  CAS  PubMed  Google Scholar 

  • Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck) and their pharmacognostic properties. Green Chem Lett Rev 10:186–201

    Article  CAS  Google Scholar 

  • Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20:225107

    Article  PubMed  CAS  Google Scholar 

  • Konwarh R, Kalita D, Mahanta C, Mandal M, Karak N (2010) Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted green nanosystem-immobilized Aspergillus niger amyloglucosidase. Appl Microbiol Biotechnol 87:1983–1992

    Article  CAS  PubMed  Google Scholar 

  • Konwarh R, Pramanik S, Devi KSP, Saikia N, Boruah R, Maiti TK, Deka RC, Karak N (2012) Lycopene coupled ‘trifoliate’ polyaniline nanofibers as multi-functional biomaterial. J Mater Chem 22:15062–15070

    Article  CAS  Google Scholar 

  • Konwarh R, Shail M, Medhi T, Mandal M, Karak N (2014) Sonication assisted assemblage of exotic polymer supported nanostructured bio-hybrid system and prospective application. Ultrason Sonochem 21:634–642

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  PubMed  Google Scholar 

  • Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014) Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc 18:364–369

    Article  CAS  Google Scholar 

  • Kumar JP, Konwarh R, Kumar M, Gangrade A, Mandal BB (2017) Potential nanomedicine applications of multifunctional carbon nanoparticles developed using green technology. ACS Sustain Chem Eng 6:1235–1245

    Article  CAS  Google Scholar 

  • Latha N, Gowri M (2014) Bio synthesis and characterisation of Fe3O4 nanoparticles using caricaya papaya leaves extract. Syn Int J Sci Res 3:1551–1556

    Google Scholar 

  • Lin J, Su B, Sun M, Bo C, Zuliang C (2018) Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Sci Total Environ 627:314–321

    Article  CAS  PubMed  Google Scholar 

  • López-Téllez G, Balderas-Hernández P, Barrera-Díaz CE, Vilchis-Nestor AR, Roa-Morales G, Bilyeu B (2013) Green method to form iron oxide nanorods in orange peels for chromium (VI) reduction. J Nanosci Nanotechnol 13:2354–2361

    Article  PubMed  CAS  Google Scholar 

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  Google Scholar 

  • Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988

    Article  CAS  PubMed  Google Scholar 

  • Manquián-Cerda K, Cruces E, Angélica RM, Reyes C, Arancibia-Miranda N (2017) Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: reactivity, characterization and removal mechanism of arsenate. Ecotoxicol Environ Saf 145:69–77

    Article  PubMed  CAS  Google Scholar 

  • Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, Mohammad A, Nishat N (2018) Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: characterization, antibacterial and antioxidant activity. J Photochem Photobiol B 185:262–274

    Article  CAS  PubMed  Google Scholar 

  • Mobasser S, Firoozi AA (2016) Review of nanotechnology applications in science and engineering. J Civil Eng Urban 6:84–93

    Google Scholar 

  • Mohanasundaram S, Hemalatha S, Vanitha V, Bharathi NP, Jayalakshmi M, Pushpabharathi N (2017) Deciphering the cytotoxic activity of Annona squamosa iron oxide nanoparticles against selective cancer cell line. Int J Res Pharm Sci 8(2):259–263

    Google Scholar 

  • Moradi B, Nabiyouni G, Ghanbari D (2018) Rapid photo-degradation of toxic dye pollutants: green synthesis of mono-disperse Fe3O4–CeO2 nanocomposites in the presence of lemon extract. J Mater Sci Mater Electron 29(13):11065–11080

    Article  CAS  Google Scholar 

  • Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A (2018) Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res 25:10504–10514

    Article  CAS  Google Scholar 

  • Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine 9:2479

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan SBN, Sathy U, Mony M, Koyakutty S, Nair V, Menon D (2012) Biocompatible magnetite/gold nano hybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4:251–260

    Article  CAS  PubMed  Google Scholar 

  • Neamtu M, Nadejde C, Hodoroaba VD, Schneider RJ, Verestiuc L, Panne U (2018) Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci Rep 8:6278

    Google Scholar 

  • Niraimathee VA, Subha V, Ravindran RE, Renganathan S (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sustain Dev 15:227–240

    Article  Google Scholar 

  • Nithya K, Sathish A, Kumar PS, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni (II) ions. J Ind Eng Chem 59:230–241

    Article  CAS  Google Scholar 

  • Patra JK, Baek KH (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol B 173:291–300

    Article  CAS  PubMed  Google Scholar 

  • Phumying S, Labuayai S, Thomas C, Amornkitbamrung V, Swatsitang E, Maensiri S (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A Mater Sci Process 111(4):1187–1193

    Article  CAS  Google Scholar 

  • Plachtová P, Medříková Z, Zbořil R, Tuček J, Varma RS, Maršálek B (2018) Iron and Iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustain Chem Eng 6:8679–8687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pramanik S, Konwarh R, Deka RC, Aidew L, Barua N, Buragohain AK, Mohanta D, Karak N (2013) Microwave-assisted poly (glycidyl methacrylate)-functionalized multiwall carbon nanotubes with a ‘tendrillar’ nanofibrous polyaniline wrapping and their interaction at bio-interface. Carbon 55:34–43

    Article  CAS  Google Scholar 

  • Prasad AS (2016) Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of garlic vine (Mansoa alliacea). Mater Sci Semicond Process 53:79–83

    Article  CAS  Google Scholar 

  • Purbia R, Paria S (2018) Noble metals decorated hierarchical maghemite magnetic tubes as an efficient recyclable catalyst. J Colloid Interface Sci 511:463–473

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Nuñez AL, Jimenez-Garcia LF, Goya GF, Sanz B, Santoyo-Salazar J (2018) In vitro magnetic hyperthermia using polyphenol-coated Fe3O4@γFe2O3 nanoparticles from Cinnamomun verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. Nanotechnology 29:074001

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe 0/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73

    Article  CAS  PubMed  Google Scholar 

  • Rath KB, Singh A, Chandan S (2015) Biosynthesis of magnetic iron oxide nanoparticles using Hibiscus as a plant source. NanoTrends 17:1–9

    Google Scholar 

  • Reardon PJ, Konwarh R, Knowles JC, Mandal BB (2017) Mimicking hierarchical complexity of the osteochondral interface using electrospun silk-bioactive glass composites. ACS Appl Mater Interfaces 9:8000–8013

    Article  PubMed  CAS  Google Scholar 

  • Santoshi V, Shakila Banu A, Kurian GA (2015) Synthesis, characterization and biological evaluation of iron oxide nanoparticles prepared by Desmodium gangeticum root aqueous extract. Int J Pharm Pharm Sci 7(13):75–80

    CAS  Google Scholar 

  • Saranya S, Vijayaranai K, Pavithra S, Raihana N, Kumanan K (2017) In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol Rep 4:427–430

    Article  CAS  Google Scholar 

  • Sathya K, Saravanathamizhan R, Baskar G (2017) Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrason Sonochem 39:446–451

    Article  CAS  PubMed  Google Scholar 

  • Sebastian A, Nangia A, Prasad MNV (2017) Carbon-bound iron oxide nanoparticles prevent calcium-induced iron deficiency in Oryza sativa L. J AgricFood Chem 65:557–564

    Article  CAS  Google Scholar 

  • Sebastian A, Nangia A, Prasad MNV (2018) A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J Clean Prod 174:355–366

    Article  CAS  Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticle using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7:1655–1661

    Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahriary M, Veisi H, Hekmati M, Hemmati S (2018) In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater Sci Eng C 90:57–66

    Article  CAS  Google Scholar 

  • Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  • Shojaee S, Mahdavi Shahri M (2018) An efficient synthesis and cytotoxic activity of 2-(4-chlorophenyl)-1H–benzo [d] imidazole obtained using a magnetically recyclable Fe3O4 nanocatalyst-mediated white tea extract. Appl Organomet Chem 32:e3934

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Sohrab SS, Osman M (2018b) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett 13:231

    Article  CAS  Google Scholar 

  • Sravanthi M, Kumar DM, Ravichandra M, Vasu G, Hemalatha KPJ (2016) Green synthesis and characterization of iron oxide nanoparticles using Wrightiatinctoria leaf extract and their antibacterial studies. Int J Curr Res Aca Rev 4:30–44

    Article  CAS  Google Scholar 

  • Sudha K, Anitta S, Devi PM, Thejomayah G (2015) Biosynthesis of iron nanoparticle from green banana peel extract. IJSSIR 4(6):165–176

    Google Scholar 

  • Thakur S, Karak N (2014) One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Mater Chem Phys 144:425–432

    Article  CAS  Google Scholar 

  • Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242

    Article  CAS  Google Scholar 

  • Tharunya P, Subha V, Kirubanandan S, Sandhaya S, Renganathan S (2017) Green synthesis of superparamagnetic iron oxide nanoparticle from Ficus carica fruit extract, characterization studies and its application on dye degradation studies. Asian J Pharm Clin Res 10:125–128

    CAS  Google Scholar 

  • Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    Article  CAS  Google Scholar 

  • Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NVV (2014a) A novel green synthesis of Fe3O4 magnetic nanorods using Punica granatum rind extract and its application for removal of Pb (II) from aqueous environment. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.09.006

  • Venkateswarlu S, Kumar BN, Prasad CH, Venkateswarlu P, Jyothi NVV (2014b) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B Condens Matter 449:67–71

    Article  CAS  Google Scholar 

  • Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV (2015) A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Physica B Condens Matter 457:30–35

    Article  CAS  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachheti, R.K., Konwarh, R., Gupta, V., Husen, A., Joshi, A. (2019). Green Synthesis of Iron Oxide Nanoparticles: Cutting Edge Technology and Multifaceted Applications. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_9

Download citation

Publish with us

Policies and ethics