Skip to main content

Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

Nutrients present in the soil are taken up by plants for their successful growth and survival. Loss of essential elements from soil, mainly by leaching, volatilization, erosion, and uptake by plants, reduces soil fertility and necessitates application of multiple-element fertilizer to make up this loss. Nutrient use efficiency of plants lies around 30–35%, 18–20%, and 35–40% for N, P, and K, respectively, with the conventional fertilizers. The use of biofertilizers in combination or in place of chemical fertilizers could not make much difference. Currently, nano-fertilizers (NFs) seem to hold promise to improve the nutrient use efficiency and hence the crop yield. They ensure a better delivery of elements such as P and Zn, which are otherwise poorly bioavailable. They also reduce the loss of runaway nutrients such as nitrate. Nano-fertilizers are produced mainly through encapsulation or coating of nutrients with nanoemulsions and nanoparticles (NPs), respectively. The NFs thus serve as nanocarriers of nutrients, which may be categorized as nanoclays, hydroxyapatite NPs, polymeric NPs, carbon-based nanomaterials (NMs), mesoporous silica, and miscellaneous materials. Interestingly, nanomaterials, including aptamer derivatives, carbon nanotubes, quantum dots, etc., are also used in agriculture sector as nanosensors (or nano-biosensors) to indicate the presence of microbes, contaminants, pollutants, toxins, pH level, nutrient level, and moisture content. In general, all NFs provide a slow, steady, and time-dependent release of essential nutrients to ensure their delivery to the plant in a balanced and need-based form. NFs can improve the nutrient use efficiency about threefolds and improve the crop productivity by promoting seed germination, seedling growth, nitrogen metabolism, photosynthetic activity, protein synthesis, antioxidant defense, etc. Some limitations and adverse effects of NFs have also been reported. However, these can be overcome by proper standardization of NF dose and selection of befitting NM for the test crop. Efficacy of the NF depends on its capacity of ionization and successful delivery of nutrients to the sink, which are modulated by the chemical composition of NMs, their concentration and aggregation state, metabolic potential of plant species, and the local environmental conditions. It is important to investigate whether NFs are fully transformed into ionic forms in the plant and later incorporated into proteins and different metabolites, or some of their parts remain intact and reach the consumers through food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish J Agri Res 14:0902

    Google Scholar 

  • Ahmad A, Abrol YP, Iqbal M (2003) Photosynthetic nitrogen use efficiency under variable environments. In: Pant RC, Ghildiyal MC (eds) Sustainable plant productivity under changing environment, Souvenir, 2nd international congress of plant physiology. IARI, New Delhi, pp 59–66

    Google Scholar 

  • Allen ER, Hossner LR, Ming DW, Henninger DL (1996) Release rates of phosphorus, ammonium and potassium in clinoptilolite-phosphate rock systems. Soil Sci Soc Amer J 60:1467–1472

    Article  CAS  Google Scholar 

  • Ambrozova P, Kynicky J, Urubek T, Nguyen VD (2017) Synthesis and modification of clinoptilolite. Molecules 22:1107

    Article  PubMed Central  CAS  Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil-plant system – toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  PubMed  Google Scholar 

  • Aref IM, Khan PR, Khan S, El-Atta H, Ahmed AI, Iqbal M (2016) Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence. Trees Struc Func 30:1669–1681

    Article  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Mishra RK, Sharma S, Dubey NK, Tripathi DK, Chauhan DK (2016) Current trends of engineered nanoparticles (ENPs) in sustainable agriculture: an overview. J Environ Anal Toxicol 6:5

    Article  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 6:13

    Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    Article  CAS  Google Scholar 

  • Azimi R, Feizi H, Hosseini MK (2013) Nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum). Not Sci Biol 5:325–331

    Article  CAS  Google Scholar 

  • Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779

    Article  CAS  PubMed  Google Scholar 

  • Benício LPF, Constantino VRL, Pinto FG, Vergütz L, Tronto J, da Costa LM (2017) Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain Chem Eng 5:399–409

    Article  CAS  Google Scholar 

  • Benzon HRL, Rubenecia MRU, Ultra VU Jr, Lee SC (2015) Nano-fertilizer affects the growth, development, and chemical properties of rice. Int J Agron Agri Res 7:105–117

    Google Scholar 

  • Berekaa M (2015) Nanotechnology in food industry: advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4:345–357

    CAS  Google Scholar 

  • Bernardo MP, Guimarães GGF, Majaron VF, Ribeiro C (2018) Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain Chem Eng 6:5152–5161

    Article  CAS  Google Scholar 

  • Bielmyer-Fraser GK, Jarvis TA, Lenihan HS, Miller RJ (2014) Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ Sci Technol 48:13443–13450

    Article  CAS  PubMed  Google Scholar 

  • Bortolin A, Aouada F, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agri Food Chem 61:7431–7439

    Article  CAS  Google Scholar 

  • Cai D, Wu Z, Jiang J, Wu Y, Feng H, Brown IG, Chu PK, Yu Z (2014) Controlling nitrogen migration through micro-nano networks. Sci Rep 4:3665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128

    Article  CAS  PubMed  Google Scholar 

  • Chhowalla M (2017) Slow-release nano-fertilizers for bumper crops. ACS Cent Sci 3:156–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Crawshaw C (2018) Intelligent nano-fertilizers herald the future. Alberta Barley Blog. http://www.albertabarley.com

  • Dakovic A, Tomasevic M, Rottinghaus EG, Matijasevic S, Sekulic Z (2007) Fumonisin B1 adsorption to octadecyldimetylbenzyl ammonium-modified clinoptilolite-rich zeolitic tuff. Micropor Mesopor Mat 105:285–290

    Article  CAS  Google Scholar 

  • Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Jyutika M, Rajwade JM (2018) Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep 8:6832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das A, Prasad R, Srivastava RB, Deshmukh S, Rai MK, Varma A (2013) Co-cultivation of Piriformospora indica with medicinal plants: case studies. In: Varma A, Kost G, Oelmüller R (eds) Piriformospora indica: Sebacinales and their biotechnological applications. Springer, Berlin, Heidelberg, pp 149–171

    Chapter  Google Scholar 

  • Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hort 210:57–64

    Article  CAS  Google Scholar 

  • De la Torre RR, Servin A, Hawthorne J, Xing B, Newman LA, Ma X, Chen G, White JG (2015) Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ Sci Technol 49:11866–11874

    Article  CAS  Google Scholar 

  • Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Bindraban PS (2018) Nanofertilizers: new products for the industry? J Agric Food Chem 66:6462–6473

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P (2018) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor 9:793–800

    Article  CAS  Google Scholar 

  • Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 22. Springer International Publishing, Dordrecht, pp 307–330

    Chapter  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 271–288

    Chapter  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces: further evidence for a stomatal pathway. Physiol Plant 132:491–502

    Article  CAS  PubMed  Google Scholar 

  • El-Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  CAS  PubMed  Google Scholar 

  • El-Ghamry AM, Mosa AA, Alshall TA, El-Ramady HR (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodiv Soil Secur 2:22

    Google Scholar 

  • Elizondo-Villarreal N, Obregón-Guerra R, García-Méndez M, Sánchez-Espinoza A-P, Alcorta-García M-A, Torres-Barrera RO, Coello V, Castaño VM (2016) Nanomodification of a natural clinoptilolite zeolite. Rev Adv Mater Sci 47:74–78

    CAS  Google Scholar 

  • El-Kereti MA, El-Feky SA, Khater MS, Osman YA, El-Sherbini EA (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5:169–181

    Article  CAS  PubMed  Google Scholar 

  • El-Ladan IY, Maiwada NA, Rumah AA (2014) Factors affecting soil quality maintenance in northern Katsina State, Nigeria. Sci World J 9:39–45

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Elmahrouk M, Bayoumi Y, Shalaby T, Amer M, Shehata S, Fari M, Domokos-Szabolcsy E, Sztrik A, Prokisch J, Pilon-Smits EAH, Pilon M, Selmar D, Haneklaus S, Schnug E (2018) Plant nano-nutrition: perspectives and challenges. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment, Environmental chemistry for a sustainable world series. Springer International Publishing, Cham, pp 129–161

    Chapter  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  PubMed  Google Scholar 

  • Everaert M, Warrinnier R, Baken S, Gustafsson JP, De Vos D, Smolders E (2016) Phosphate-exchanged Mg-Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustain Chem Eng 4:4280–4287

    Article  CAS  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  CAS  Google Scholar 

  • Gabrielli P, Barbante C, Plane JM, Varga A, Hong S, Cozzi G, Gaspari V, Planchon FA, Cairns W, Ferrari C, Crutzen P, Cescon P, Boutron CF (2004) Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature 432:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerdini FS (2016) Effect of nano potassium fertilizer on some parchment pumpkin (Cucurbita pepo) morphological and physiological characteristics under drought conditions. Int J Farm Allied Sci 5:367–371

    Google Scholar 

  • Ghahremani A, Akbari K, Yousefpour M, Ardalani H (2014) Effects of nano-potassium and nano-calcium chelated fertilizers on qualitative and quantitative characteristics of Ocimum basilicum. Int J Pharm Res Schol 3:00167

    Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Giroto AS, Guimarães GGF, Foschini M, Ribeiro C (2017) Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7:46032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn JB, Klaine SJ (2013) Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes. Environ Sci Technol 47:10223–10230

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between sliver nanoparticles and plant growth. In: Proceedings of the international symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory. Greensys-2013, vol 6, pp 225–227

    Google Scholar 

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health. 6:77–83

    Google Scholar 

  • Hemraj C (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Coll Surf Biointerf 62:42–50

    Article  CAS  Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Kang J, Lu K, Ruiren Zhou R, Mu L, Zhou Q (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 4:6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  CAS  Google Scholar 

  • Husted S (2018) Innovative approach taken to phosphorus nanofertilizer research. AG Chemi Group. https://www.agchemigroup.eu/

  • IFA (2016) Nutrient management handbook, International Fertilizer Association (IFA). https://www.fertilizer.org/images/Library_Downloads/2016_Nutrient_Management_Handbook.pdf

  • Iqbal M, Ali ST, Mahmooduzzafar (2000) Photosynthetic performance of certain dicotyledonous tropical plants under degraded environment. In: Khan MA, Farooq S (eds) Environment, biodiversity and conservation. APH Publishing Corporation, New Delhi, pp 408–427

    Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnol 13:677–684

    Article  CAS  Google Scholar 

  • Kale AP, Gawade SN (2016) Studies on nanoparticle induced nutrient use efficiency of fertilizer and crop productivity. Green Chem Tech Letter 2:88–92

    Article  Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer Nature, Singapore, pp 279–291

    Chapter  Google Scholar 

  • Khalifa NS, Hasaneen MN (2018) The effect of chitosan-PMAA-NPK nanofertilizer on Pisum sativum plants. 3 Biotech 8:193

    Google Scholar 

  • Khanm H, Vaishnavi BA, Shankar AG (2018) Rise of nano-fertilizer era: effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int J Curr Microbiol App Sci 7:1861–1871

    Article  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators. Effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Park HG, Chang KH, Nam DH, Yeo MK (2016) Trophic transfer of nano-TiO2 in a paddy microcosm: a comparison of single-dose versus sequential multi-dose exposures. Environ Pollut 212:316–324

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Arachchige BDM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GAJ (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164

    Article  CAS  Google Scholar 

  • Kundu S, Adhikari T, Mohanty SR, Rajendiran S, Vassanda Coumar M, Saha JK, Patra AK (2016) Reduction in nitrous oxide emission from nano zinc oxide and nano rock phosphate coated urea. Agrochimica 60:59–70

    CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nano-conjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2016) Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Micropor Mesopor Mat 232:174–183

    Article  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Li JX, Wee CD, Sohn BK (2010) Growth response of hot pepper applied with ammonium (NH4+) and potassium (K+)-loaded zeolite. Korean J Soil Sci Fert 43:619–625

    CAS  Google Scholar 

  • Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S, Lifshitz Y, Lee S-T, Kang Z (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mat 1:663–672

    Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang YD, Zhang ZM (2009) The application research of nano-biotechnology to promote increasing of vegetable production. Hubei Agril Sci 1:041

    CAS  Google Scholar 

  • Liu R, Kang Y, Pie L, Wan S, Liu S, Liu S (2016a) Use of a new controlled-loss fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou Reservoir area of China. Commun Soil Sci Plant Anal 47:1137–1147

    Article  CAS  Google Scholar 

  • Liu R, Zhang H, Lal R (2016b) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on Lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42

    Article  CAS  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Bowles M (2013) How will nanotechnology affect agricultural supply chains? Int Food Agribus Manag Rev 16:21–42

    Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Malebra M, Cerana R (2018) Recent advances of chitosan applications in plants. Polymers 10:118

    Article  CAS  Google Scholar 

  • Malhi SS, Haderlin LK, Pauly DG, AM J (2002) Improving fertiliser use efficiency. Better Crops 86:22–25

    Google Scholar 

  • Manikandan A, Subramanian KS (2016) Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci 9:1–9

    Article  CAS  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–13

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London 889 pp

    Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res Int 23:1732–1741

    Article  PubMed  CAS  Google Scholar 

  • Mashock MJ, Kappell AD, Hallaj N, Hristova KR (2016) Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae. Environ Toxicol Chem 35:134–143

    Article  PubMed  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807

    Article  CAS  PubMed  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 25–67

    Google Scholar 

  • Mazur GA, Medvid GK, Gvigora IT (1986) Use of natural zeolite to increase the fertilizer of coarse soils. Soviet Soil Sci 16:105–111

    Google Scholar 

  • Ming DW, Mumpton FA (1989) Zeolites in soils. In: Dixon LB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 873–911

    Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–551

    Article  CAS  PubMed  Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52:423–437

    Article  CAS  Google Scholar 

  • Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8:013001

    Article  CAS  Google Scholar 

  • Mrakovcic M, Absenger M, Riedl R, Smole C, Roblegg E, Fröhlich LF, Fröhlich E (2013) Assessment of long-term effects of nanoparticles in a microcarrier cell culture system. PLoS One 8:e56791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam MFE, Imran M (2018) Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest J Nanomater Biostr 13:315–323

    Google Scholar 

  • Nair PM, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res Int 21:12709–12022

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220

    Article  CAS  PubMed  Google Scholar 

  • Narendhran S, Rajiv P, Sivaraj R (2016) Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc-deficient soil. Int J Pharm Pharm Sci 8:365–371

    CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JLD, Campos EVR, Pereira AES, Pasquoto T, Lima R, Grillo R, De Andrade DJ, Dos Santos FA, Fraceto LF (2018) Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J Agric Food Chem 6:1330–1340

    Article  CAS  Google Scholar 

  • Omanović-Mikličanin E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herz 47:59–70

    Google Scholar 

  • Palmqvist NG, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Nature 5:10146

    CAS  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Euro J Soil Sci 63:437–456

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 289–300

    Chapter  Google Scholar 

  • Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26:693–701

    Article  CAS  Google Scholar 

  • Patolsky F, Zheng G, Lieber C (2006) Nanowire-based biosensors. Anal Chem 78:4260–4269

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmuller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monnieri. J Basic Microbiol 53:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. African J Biotech 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Preetha PS, Balakrishnan N (2017) A review of nanofertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6:3117–3133

    Article  CAS  Google Scholar 

  • Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol App Sci 7:3325–3335

    Article  Google Scholar 

  • Rahale S (2011) Nutrient release pattern of nanofertilizer formulation. PhD (Agri.) Thesis. Tamilnadu Agricultural University, Coimbatore

    Google Scholar 

  • Raliya R, Saharan V, Dimpka C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503

    Article  CAS  PubMed  Google Scholar 

  • Ramesh K, Reddy DD (2011) Zeolites and their potential uses in agriculture. Adv Agron 113:219–241

    Article  Google Scholar 

  • Rane M, Bawskar M, Rathod D, Nagaonkar D, Rai M (2015) Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Adv Nat Sci Nanosci Nanotechnol 6:045014

    Article  CAS  Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res Int 23:4120–4128

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueño MC, Pérez-de-Luque A, Maycock C, Fevereiro P, Oliva A, Fernández-Pacheco R, Ibarra MR, De la Fuente JM, Marquina C, Rubiales D, Prats E (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6:9100–9110

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues SM, Trindade T, Duarte AC, Pereira R, Koopmans GF, Römkens PFAM (2016) A framework to measure the availability of engineered nanoparticles in soil: trends in soil tests and analytical tools. Trends Anal Chem 75:129

    Article  CAS  Google Scholar 

  • Romih T, Drašler B, Jemec A, Drobne D, Novak S, Golobič M, Makovec D, Susič R, Kogej K (2015) Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber. Sci Total Environ 508:76–84

    Article  CAS  PubMed  Google Scholar 

  • Roshanravan B, Soltani SM, Mahdavi F, Rashid SA, Yusop MK (2014) Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chem Speciat Bioavailab 26:249–256

    Article  CAS  Google Scholar 

  • Roshanravan B, Soltani SM, Rashid SA, Mahdavi F, Yusop MK (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with Chitosan binder. Chem Speciat Bioavailab 27:44–51

    Article  CAS  Google Scholar 

  • Ruhil K, Sheeba, Ahmad A, Iqbal M, Tripathy BC (2015) Photosynthesis and growth responses of mustard (Brassica juncea L. cv. Pusa Bold) plants to free air carbon-dioxide enrichment (FACE). Protoplasma 252:935–946

    Article  CAS  PubMed  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33

    Article  CAS  Google Scholar 

  • Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu (2014a) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hort 175:1–8

    Article  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014b) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494

    Article  CAS  Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Savoy H (1999) Fertilizers and their use. PB-1637, agricultural extension service, The University of Tennessee, Knoxville

    Google Scholar 

  • Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ (2015) Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 24:239–261

    Article  CAS  PubMed  Google Scholar 

  • Sharifi R, Mohammadi K, Rokhzadi A (2016) Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environ Exp Biol 14:151–156

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Sharma R, Ragavan KV, Thakur MS, Raghavaro KSMS (2015) Recent advances in nanoparticle-based aptasensors for food contaminants. Biosens Bioelectron 74:612–627

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92

    Article  CAS  Google Scholar 

  • Simarmata T, Hersanti, Turmuktini T, Fitriatin BN, Setiawati MR, Purwanto (2017) Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI J Biosci 23:181–184. https://doi.org/10.1016/j.hjb.2017.01.001

    Article  Google Scholar 

  • Singh MD, Chirag G, Prakash PO, Mohan MH, Prakasha G, Vishwajith (2017) Nano fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agri Sci 9:3831–3833

    CAS  Google Scholar 

  • Sohair EED, Abdall AA, Amany AM, Houda RA (2018) Effect of nitrogen, phosphorus and potassium nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton (Gossypium barbadense L.). Biosci Res 15:549–564

    Article  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Google Scholar 

  • Soliman AS, Hassan M, Abou-Elella F, Ahmed AHH, El-Feky SA (2016) Effect of nano and molecular phosphorus fertilizers on growth and chemical composition of baobab (Adansonia digitata L.). J Plant Sci 11:52–60

    Article  CAS  Google Scholar 

  • Songkhum P, Wuttikhun T, Chanlek N, Khemthong P, Laohhasurayotin K (2018) Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Appl Clay Sci 152:311–322

    Article  CAS  Google Scholar 

  • Sturikova H, Krystofova O, Hedbavny J, Adam V (2017) The comparison of effect of zinc sulphate and zinc oxide nanoparticles on plants. Mendel Net 24:932–936

    Google Scholar 

  • Subbarao CV, Kartheek G, Sirisha D (2013) Slow release of potash fertilizer through polymer coating. Int J Appl Sci Eng 1:25–30

    Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 69–80

    Google Scholar 

  • Sun D, Hussain H, Yi Z, Siegele R, Cresswell T, Kong L, Cahill D (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Syu YY, Hung J-H, Chen J-C, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agribiol Res 3:257–262

    Article  CAS  Google Scholar 

  • Tepe N, Bau M (2014) Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Sci Total Environ 488–489:243–251

    Article  PubMed  CAS  Google Scholar 

  • Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Nature, Singapore, pp 317–340

    Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (Ag NPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Umar S, Anjana, Iqbal M (2003) Potassium fertilization: a substitute to pesticide application in field crops. In: Prakash S (ed) Proceedings of national symposium on biochemical sciences, health and environmental aspects. Allied Publishers, New Delhi, pp 494–496

    Google Scholar 

  • Umar S, Anjana, Iqbal M (2011) Interactive effects of potassium and nitrogen nutrition on physiological use efficiency of nitrogen and crop yield. In: Jain V, Kumar PA (eds) Nitrogen use efficiency in plants. New India Publishing Agency, New Delhi, pp 125–155

    Google Scholar 

  • Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vittori AL, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res Int 22:1841–1853

    Article  CAS  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012a) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1–13

    CAS  Google Scholar 

  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016a) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MH, Misra RP, Giraldo JP, Kwak S-Y, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Jiang Q, Reddy N, Yang Y (2011) Hollow nanoparticles from zein for potential medical applications. J Mater Chem 21:18227

    Article  CAS  Google Scholar 

  • Yasmin J, Ahmed MR, Cho B-K (2016) Biosensors and their applications in food safety: a review. J Biosyst Eng 41:240–254

    Article  Google Scholar 

  • Yuvaraj M, Subramanian KS (2014) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61:319–326

    Article  CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2017) Development of slow release Zn fertilizer using nano-zeolite as carrier. J Plant Nutr 41:311–320

    Article  CAS  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Tech Agri 3:17

    Article  CAS  Google Scholar 

  • Zhou JM, Huang PM (2007) Kinetics of potassium release from illite as influenced by different phosphates. Geoderma 138:221–228

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, M., Umar, S., Mahmooduzzafar (2019). Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_19

Download citation

Publish with us

Policies and ethics