Skip to main content

Proprioception and Charcot Joint

  • Chapter
  • First Online:

Abstract

The evidence related to the neurophysiology of position sense, “proprioception,” is reviewed, and it documents that proprioception is due to sensory receptors originating in the skin, not from within the joint. The evidence is reviewed that joint denervation alone will not result in a Charcot joint.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Used with permission from Collins et al. [32].

References

  1. Pearce JM. Sir Charles Scott Sherrington (1857–1952) and the synapse. J Neurol Neurosurg Psychiatry. 2004;75:544.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sherrington CS. Wikepedia: https://en.wikipedia.org/wiki/Charles_Scott_Sherrington. Accessed 18 Mar 2018.

  3. Andrew BL, Dodt E. The deployment of sensory nerve endings at the knee joint of the cat. Acta Physiol Scand. 1953;28:8287–96.

    Article  CAS  Google Scholar 

  4. Boyd IA. The histological structure of the receptors in the knee-joint of the cat correlated with their physiological response. J Physiol. 1954;124:476–88.

    Article  CAS  Google Scholar 

  5. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply to the human knee and its functional importance. Am J Sports Med. 1982;10:329–35.

    Article  CAS  Google Scholar 

  6. Jew JY, Berger EJ, Berger RA, Lin YT. Fluorescence immunohistochemistry and confocal scanning laser microscopy: a protocol for studies of joint innervation. Acta Orthop Scand. 2003;74:689–96.

    Article  Google Scholar 

  7. Lin YT, Berger RA, Berger EJ, Tomita K, Jew JY, Yang C, An KN. Nerve endings of the wrist joint: a preliminary report of the dorsal radiocarpal ligament. J Orthop Res. 2006;24:1225–30.

    Article  Google Scholar 

  8. Tomita K, Berger EJ, Berger RA, Kraisarin J, An KN. Distribution of nerve endings in the human dorsal radiocarpal ligament. J Hand Surg Am. 2007;32:466–73.

    Article  Google Scholar 

  9. Dellon AL. Evaluation of sensibility and re-education of sensation in the hand. Baltimore: Williams & Wilkins Pub Co; 1982. p. 46.

    Google Scholar 

  10. Gelfan S, Carter S. Muscle sense in man. Exp Neurol. 1967;18:469–73.

    Article  CAS  Google Scholar 

  11. Moberg E. The role of cutaneous afferents in position sense, kinesthesia and motor function of the hand. Brain. 1984;106:1–12.

    Article  Google Scholar 

  12. Dellon AL. The sensational contributions of Erik Moberg. J Hand Surg. 1990;15B:24–9.

    Google Scholar 

  13. Chang KN, De Armond SJ, Buncke HJ Jr. Sensory reinnervation in microsurgical reconstruction of the heel. Plast Reconstr Surg. 1986;78:652–63.

    Article  CAS  Google Scholar 

  14. Dellon AL. Muscle sense or non-sense. Ann Plast Surg. 1991;26:444–8.

    Article  CAS  Google Scholar 

  15. Fox JC, Klemperer WW. Vibratory sensibility. Arch Neurol Psychol. 1942;48:622–45.

    Article  Google Scholar 

  16. Moberg E. Fingers were made before forks. Hand. 1972;4:201–6.

    Article  CAS  Google Scholar 

  17. Moberg E. Reconstructive hand surgery in tetraplegia, stroke and cerebral palsy: some basic concepts on physiology and neurology. J Hand Surg Am. 1976;1:2934.

    Article  Google Scholar 

  18. Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods. J Sport Health Sci. 2016;5:80–90.

    Article  Google Scholar 

  19. Dellon AL. Chapter 3: proprioception. In: Somatosensory testing and rehabilitation. Bethesda: American Occupational Therapy Association; 1997. p. 25–30.

    Google Scholar 

  20. Gardner E. Spike potentials in sensory fibers from the knee joint of the cat. Anat Rec. 1947;97:336.

    PubMed  Google Scholar 

  21. Gardner E. Conduction rates and dorsal root inflow of sensory fibers from the knee joint of the cat. Am J Phys. 1948;152:436–45.

    Article  CAS  Google Scholar 

  22. Gardner E, Latimer F, Stillwell D. Central connections for afferent fibers from the knee joint of the cat. Am J Phys. 1949;159:195–8.

    Article  CAS  Google Scholar 

  23. Boyd IA. Nerve impulses from proprioceptors in the knee joint of the cat. J Physiol. 1953;119:8P–9P.

    CAS  PubMed  Google Scholar 

  24. Haddad B. Projection of afferent fibers from the knee joint to the cerebellum of the cat. Am J Phys. 1953;172:511–4.

    Article  CAS  Google Scholar 

  25. Grigg P, Finerman GA, Riley LH. Joint-position sense after total hip replacement. J Bone Joint Surg. 1973;55A:1061–25.

    Google Scholar 

  26. Grigg P, Greenspan BJ. Response of primate joint afferent neurons to mechanical stimulation of knee joint. J Neurophysiol. 1977;40:1–8.

    Article  CAS  Google Scholar 

  27. Clark FJ, Burgess PR. Slowly-adapting receptors in cat knee joint: can they signal joint angle. J Neurophysiol. 1975;38:1448–63.

    Article  CAS  Google Scholar 

  28. Clark FJ, Horch KW, Bach SM. Contributions of cutaneous and joint receptors to static knee-position sense in man. J Neurophysiol. 1979;42:877888.

    Article  Google Scholar 

  29. Robles-De-La-Torre G, Hayward V. Force can overcome object geometry in the perception of shape through active touch. Nature. 2001;412:445–8.

    Article  CAS  Google Scholar 

  30. Drewing K, Wiecki TV, Ernst MO. Material properties determine how force and position signals combine in haptic shape perception. Acta Psychol. 2008;128:264–73.

    Article  Google Scholar 

  31. Bolton DA, Misiaszek JE. Contribution of hindpaw cutaneous inputs to the control of lateral stability during walking in the cat. J Neurophysiol. 2009;102:1711–24.

    Article  CAS  Google Scholar 

  32. Collins DF, Refshauge KM, Todd G, Gandevia SC. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol. 2005;94:1699–706.

    Article  CAS  Google Scholar 

  33. Hagert E, Persson JK, Werner MN, Ljung BO. Evidence of wrist proprioceptive reflexes elicited after stimulation of the scapholunate interosseous ligament. J Hand Surg Am. 2009;34A:642–51.

    Article  Google Scholar 

  34. Hagert E, Persson JK. Desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes. J Hand Surg Am. 2010;35A:1059–66.

    Article  Google Scholar 

  35. Hagert E. Proprioception of the wrist joint: a review of current concepts and possible implications on the rehabilitation of the wrist. J Hand Ther. 2010;23:2–16.

    Article  Google Scholar 

  36. Dellon AL. It is OK to lose your nerve: commentary on desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes. J Hand Surg by Hagert E. J Hand Surg Am. 2010;35A:1059–1066, commentary; 2010;35A:1067–1069.

    Google Scholar 

  37. Gay A, Harbst K, Kaufman KR, Hansen DK, Laskowski ER, Berger RA. New method of measuring wrist joint position sense. J Neuroeng Rehabil. 2010;10(7):5.

    Article  Google Scholar 

  38. Gay A, Harbst K, Hansen DK, Laskowski ER, Berger RA, Kaufman KR. Effect of partial wrist denervation on wrist kinesthesia: wrist denervation does not impair proprioception. J Hand Surg Am. 2011;36:1774–9.

    Article  Google Scholar 

  39. Werntz JR, Chesher SP, Breidenbach WC, Kleinert HE, Bissonnette MA. A new dynamic splint for postoperative treatment of flexor tendon injury. J Hand Surg Am. 1989;14:559–66.

    Article  CAS  Google Scholar 

  40. Charcot JM. Wikepdia. https://en.wikipedia.org/wiki/Jean-Martin_Charcot. Accessed 28 May 2018.

  41. Charcot JM, Féré C. Affections osseuses et articulaires du pied chez les tabétiques (Pied tabétique). Arch Neurol. 1883;6:305–19.

    Google Scholar 

  42. Wukich DK, Sung W. Charcot arthropathy of the foot and ankle: modern concepts and management review. J Diabet Complications. 2009;23:409–26.

    Article  Google Scholar 

  43. Dodd A, Daniels TR. Charcot neuroarthropathy of the foot and ankle. J Bone Joint Surg Am. 2018;100:696–711.

    Article  Google Scholar 

  44. Dellon AL. The Dellon approach to neurolysis in the neuropathy patient with chronic nerve compression. Handchir Mikrochir Plast Chir. 2008;40:1–10.

    Article  Google Scholar 

  45. Dellon AL. The four medial ankle tunnels: a critical review of perceptions of tarsal tunnel syndrome and neuropathy. Neurosurg Clin N Am. 2008;19:629–48.

    Article  Google Scholar 

  46. Nickerson S, Alzheimer D, Dellon AL. Early stage diabetic Charcot Foot Syndrome may respond to nerve decompression. Microsurgery. 2009;29:541–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dellon, A.L. (2019). Proprioception and Charcot Joint. In: Joint Denervation. Springer, Cham. https://doi.org/10.1007/978-3-030-05538-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05538-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05537-0

  • Online ISBN: 978-3-030-05538-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics