Skip to main content

An Overview of Multiple Sequence Alignment Methods Applied to Transmembrane Proteins

  • Conference paper
  • First Online:
Technology Trends (CITT 2018)

Abstract

Transmembrane proteins (TMPs) have received a great deal of attention playing a fundamental role in cell biology and are considered to constitute around 30% of proteins at genomic scale. Multiple Sequence Alignment (MSA) problem has been studied for some years and researchers have proposed many heuristic and stochastic techniques tailored for sequences of soluble proteins, considering that there are a few particular differences that ought to be taken into consideration aligning TMPs sequences, these techniques are therefore not optimal to align this special class of proteins. There is a small number of MSA methods applied specifically to TMPs. In this review, we have summarized the features, implementations and performance results of three MSA methods applied to TMPs: PRALINE\(^\mathrm{TM}\), TM-Coffee and TM-Aligner. These methods have illustrated impressive advances in the accuracy and computational efforts aligning TMPs sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahr, A., Thompson, J.D., Thierry, J.C., Poch, O.: BAliBASE (benchmark alignment database): enhancements for repeats, transmembrane sequences and circular permutations. Nucleic Acids Res. 29(1), 323–326 (2001). https://doi.org/10.1093/nar/29.1.323

    Google Scholar 

  2. Bhat, B., Ganai, N.A., Andrabi, S.M., Shah, R.A., Singh, A.: TM-Aligner: multiple sequence alignment tool for transmembrane proteins with reduced time and improved accuracy. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-13083-y

    Google Scholar 

  3. Chang, J.M., Di Tommaso, P., Taly, J.F., Notredame, C.: Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinform. 13(4), S1 (2012). https://doi.org/10.1186/1471-2105-13-S4-S1

    Google Scholar 

  4. Cserzö, M., Bernassau, J.M., Simon, I., Maigret, B.: New alignment strategy for transmembrane proteins. J. Mol. Biol. 243(3), 388–396 (1994). https://doi.org/10.1006/jmbi.1994.1666

    Google Scholar 

  5. Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins: Struct. Funct. Bioinform. 61(1), 127–136 (2005). https://doi.org/10.1002/prot.20527

    Google Scholar 

  6. Dayhoff, M., Schwartz, R., Orcutt, B.C.: A model of evolutionary change in proteins. Atlas Protein Seq. Struct. 5, 345–352 (1978)

    Google Scholar 

  7. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  8. Finn, R.D., et al.: The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1), D279–D285 (2016). https://doi.org/10.1093/nar/gkv1344

    Google Scholar 

  9. Floden, E.W., Tommaso, P.D., Chatzou, M., Magis, C., Notredame, C., Chang, J.M.: PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases. Nucleic Acids Res. 44(W1), W339–W343 (2016). https://doi.org/10.1093/nar/gkw300

    Google Scholar 

  10. Forrest, L.R., Tang, C.L., Honig, B.: On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 91(2), 508–517 (2006). https://doi.org/10.1529/biophysj.106.082313

    Google Scholar 

  11. Frishman, D.: Structural Bioinformatics of Membrane Proteins (2010). https://doi.org/10.1007/978-3-7091-0045-5

  12. Frishman, D.: Structural Bioinformatics of Membrane Proteins. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7091-0045-5

    Google Scholar 

  13. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89(22), 10915–10919 (1992)

    Google Scholar 

  14. Heringa, J.: Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23(3), 341–364 (1999). https://doi.org/10.1016/S0097-8485(99)00012-1

    Google Scholar 

  15. Heringa, J.: Local weighting schemes for protein multiple sequence alignment. Comput. Chem. 26(5), 459–477 (2002). http://www.sciencedirect.com/science/article/pii/S0097848502000086

    Google Scholar 

  16. Isberg, V., et al.: GPCRdb: an information system for g protein-coupled receptors. Nucleic Acids Res. 44(D1), D356–D364 (2016). https://doi.org/10.1093/nar/gkv1178

    Google Scholar 

  17. Jimenez-Morales, D., Adamian, L., Liang, J.: Detecting remote homologues using scoring matrices calculated from the estimation of amino acid substitution rates of beta-barrel membrane proteins. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1347–1350, August 2008. https://doi.org/10.1109/IEMBS.2008.4649414

  18. Jones, D., Taylor, W., Thornton, J.: A mutation data matrix for transmembrane proteins. FEBS Lett. 339(3), 269–275 (1994)

    Google Scholar 

  19. Käll, L., Krogh, A., Sonnhammer, E.L.: A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338(5), 1027–1036 (2004). https://doi.org/10.1016/j.jmb.2004.03.016

    Google Scholar 

  20. Kozma, D., Simon, I., Tusnády, G.E.: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res. 41(D1), D524–D529 (2013). https://doi.org/10.1093/nar/gks1169

    Google Scholar 

  21. Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes1. J. Mol. Biol. 305(3), 567–580 (2001)

    Google Scholar 

  22. Müller, T., Rahmann, S., Rehmsmeier, M.: Non-symmetric score matrices and the detection of homologous transmembrane proteins. Bioinformatics 17(suppl1), S182–S189 (2001). https://doi.org/10.1093/bioinformatics/17.suppl_1.S182

    Google Scholar 

  23. Newby, Z.E., et al.: A general protocol for the crystallization of membrane proteins for x-ray structural investigation. Nat. Protoc. 4(5), 619 (2009)

    Google Scholar 

  24. Ng, P.C., Henikoff, J.G., Henikoff, S.: PHAT: a transmembrane-specific substitution matrix. Bioinformatics 16(9), 760–766 (2000). https://doi.org/10.1093/bioinformatics/16.9.760

    Google Scholar 

  25. Pirovano, W., Feenstra, K.A., Heringa, J.: Praline\(^{\rm TM}\): a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24(4), 492–497 (2008). https://doi.org/10.1093/bioinformatics/btm636

    Google Scholar 

  26. Shafrir, Y., Guy, H.R.: STAM: simple transmembrane alignment method. Bioinformatics 20(5), 758–769 (2004). https://doi.org/10.1093/bioinformatics/btg482

    Google Scholar 

  27. Tusnády, G.E., Simon, I.: The hmmtop transmembrane topology prediction server. Bioinformatics 17(9), 849–850 (2001). https://doi.org/10.1093/bioinformatics/17.9.849

    Google Scholar 

  28. Wallin, E., Heijne, G.V.: Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7(4), 1029–1038 (1998)

    Google Scholar 

  29. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1, 337–348 (1994)

    Google Scholar 

  30. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35(10), 83–91 (1992)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by the 5th convocation of Fondo Competitivo de Investigación Científica y Tecnológica FOCICYT of the Universidad Técnica Estatal de Quevedo from Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Zambrano-Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zambrano-Vega, C., Oviedo, B., Villamar-Torres, R., Botto-Tobar, M., Barros-Rodríguez, M. (2019). An Overview of Multiple Sequence Alignment Methods Applied to Transmembrane Proteins. In: Botto-Tobar, M., Pizarro, G., Zúñiga-Prieto, M., D’Armas, M., Zúñiga Sánchez, M. (eds) Technology Trends. CITT 2018. Communications in Computer and Information Science, vol 895. Springer, Cham. https://doi.org/10.1007/978-3-030-05532-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05532-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05531-8

  • Online ISBN: 978-3-030-05532-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics