Skip to main content

Digital Forensics Event Graph Reconstruction

  • Conference paper
  • First Online:
Digital Forensics and Cyber Crime (ICDF2C 2018)

Abstract

Ontological data representation and data normalization can provide a structured way to correlate digital artifacts and reduce the amount of data that a forensics investigator needs to process in order to understand the sequence of events that happened on a system. However, ontology processing suffers from large disk consumption and a high computational cost. This paper presents Property Graph Event Reconstruction (PGER), a data normalization and event correlation system that utilizes a native graph database to store event data. This storage method leverages zero index traversals. PGER reduces the processing time of event correlation grammars by up to a factor of 9.9 times over a system that uses a relational database based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angles, R.: A comparison of current graph database models. In: Proceedings of IEEE 28th International Conference on Data Engineering Workshops, ICDEW 2012, pp. 171–177. IEEE (2012). https://doi.org/10.1109/ICDEW.2012.31

  2. Bureau of Labor Statistics: Occupational Outlook Handbook: Forensic Science Technicians (2017). https://www.bls.gov/ooh/life-physical-and-social-science/forensic-science-technicians.htm

  3. Bureau of Labor Statistics: Occupational Outlook Handbook: Information Security Analysts (2017). https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm

  4. Carvey, H., Hull, D.: Windows Registry Forensics, 2nd edn. Elsevier, Cambridge (2016). https://doi.org/10.1016/C2009-0-63856-3

    Book  Google Scholar 

  5. Casey, E., Back, G., Barnum, S.: Leveraging CybOX™ to standardize representation and exchange of digital forensic information. Digit. Investig. 12(S1), S102–S110 (2015). https://doi.org/10.1016/j.diin.2015.01.014

    Article  Google Scholar 

  6. Chabot, Y., Bertaux, A., Nicolle, C., Kechadi, M.T.: A complete formalized knowledge representation model for advanced digital forensics timeline analysis. Digit. Investig. 11, S95–S105 (2014). https://doi.org/10.1016/j.diin.2014.05.009. http://www.sciencedirect.com/science/article/pii/S1742287614000528

    Article  Google Scholar 

  7. Chabot, Y., Bertaux, A., Nicolle, C., Kechadi, T.: An ontology-based approach for the reconstruction and analysis of digital incidents timelines. Digit. Investig. 15, 83–100 (2015). https://doi.org/10.1016/j.diin.2015.07.005

    Article  Google Scholar 

  8. Chao, J., Graphista, N.: Graph Databases for Beginners: Native vs. Non-Native Graph Technology (2016). https://neo4j.com/blog/native-vs-non-native-graph-technology/

  9. Gladyshev, P., Patel, A.: Finite state machine approach to digital event reconstruction. Digit. Investig. 1(2), 130–149 (2004). https://doi.org/10.1016/j.diin.2004.03.001

    Article  Google Scholar 

  10. GraphAware: GraphAware Neo4j TimeTree (2018). https://github.com/graphaware/neo4j-timetree

  11. Gu\(\eth \)jonssón, K.: Mastering the Super Timeline With log2timeline (2010). https://www.sans.org/reading-room/whitepapers/logging/mastering-super-timeline-log2timeline-33438

  12. Hargreaves, C., Patterson, J.: An automated timeline reconstruction approach for digital forensic investigations. Digit. Investig. 9(Suppl.), S69–S79 (2012). https://doi.org/10.1016/j.diin.2012.05.006

    Article  Google Scholar 

  13. James, J., Gladyshev, P., Abdullah, M., Zhu, Y.: Analysis of evidence using formal event reconstruction. Digit. Forensics Cyber Crime 31, 85–98 (2010). https://doi.org/10.1007/978-3-642-11534-9

    Article  Google Scholar 

  14. Khan, M.N., Mnakhansussexacuk, E., Wakeman, I.: Machine Learning for Post-Event Timeline Reconstruction. PGnet (January 2006), 1–4 (2006)

    Google Scholar 

  15. Marrington, A., Mohay, G., Clark, A., Morarji, H.: Event-based computer profiling for the forensic reconstruction of computer activity. AusCERT2007 R&D Stream 71, 71–87 (2007). http://eprints.qut.edu.au/15579

    Google Scholar 

  16. Okolica, J.S.: Temporal Event Abstraction and Reconstruction. Ph.D. thesis, AFIT (2017)

    Google Scholar 

  17. Robinson, I., Webber, J., Eifrem, E.: Graph Databases, 2nd edn. O’Reilly Media Inc., Sebastopol (2015)

    Google Scholar 

  18. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. Computing Re-search Repository, pp. 1–18 (2010). https://doi.org/10.4018/978-1-61350-053-8, http://arxiv.org/abs/1004.1001

  19. Schatz, B., Mohay, G., Clark, A.: Rich Event Representation for Computer Forensics. In: Asia Pacific Industrial Engineering and Management Systems APIEMS 2004, pp. 1–16 (2004)

    Google Scholar 

  20. Turnbull, B., Randhawa, S.: Automated event and social network extraction from digital evidence sources with ontological mapping. Digit. Investig. 13, 94–106 (2015). https://doi.org/10.1016/j.diin.2015.04.004

    Article  Google Scholar 

Download references

Acknowledgments

The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Schelkoph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schelkoph, D.J., Peterson, G.L., Okolica, J.S. (2019). Digital Forensics Event Graph Reconstruction. In: Breitinger, F., Baggili, I. (eds) Digital Forensics and Cyber Crime. ICDF2C 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-05487-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05487-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05486-1

  • Online ISBN: 978-3-030-05487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics