Skip to main content

Exotic Meats: An Alternative Food Source

  • Chapter
  • First Online:

Abstract

Exotic meats were a protein source for human diet for many years. However, the massive capture caused the overexploitation and placed many reptiles and amphibious on the verge of extinction. Therefore, the captive rearing, the control during slaughtering and processing has been proposed as an alternative to the capture of wild animals. The present chapter shows the nutritional composition of this kind of meat, characterized by low levels of fat, high contents of protein, essential amino acids, fatty acids (especially long-chain n-3) and minerals indicating that their consumption may be beneficial for human health. However, very little data is available on the nutritional value of these meats. To concluded, exotic meat is an interesting alternative to be considered as a component of the human diet. In addition, the farming of exotic species could be important in the economy of some regions or countries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abulude FO (2007) Determination of the chemical composition of bush meats found in Nigeria. Am J Food Technol 2(3):153–160

    Article  CAS  Google Scholar 

  • Ali ME, Nina Naquiah AN, Mustafa S, Hamid SBA (2015) Differentiation of frog fats from vegetable and marine oils by fourier transform infrared spectroscopy and chemometric analysis. Croat J Food Sci Technol 7(1):1–8

    Article  Google Scholar 

  • Altherr S, Goyenechea A, Schubert DJ (2011). Canapés to extinction: The international trade in frog’s legs and it ecological impact. A report by Pro Wildlife, Defenders of Wildlife and Animal Welfare Institute (eds.), Munich (Germany), Washington, DC (USA)

    Google Scholar 

  • Alves RRN, Vieira KS, Santana GG, Vieira WLS, Almeida WO, Souto WMS et al (2012) A review on human attitudes towards reptiles in Brazil. Environ Monit Assess 184:6877–6901

    Article  Google Scholar 

  • Arenas de Moreno L, Vidal A, Huerta-Sánchez D, Navas Y, Uzcátegui-Bracho S, Huerta-Leidenz N (2000) Análisis comparativo proximal y de minerales entre carnes de iguana, pollo y res. Arch Latinoam Nutr 50(4):409–415

    Google Scholar 

  • Bahar TB, Gurbuz DR, Özyurt G (2008) Nutritional composition of frog (Rana esculenta) waste meal. Bioresour Technol 99:1332–1338

    Article  Google Scholar 

  • Bertolini R, Zgrabic G, Cuffolo E (2005) Wild game meat: products, market, legislation and processing controls. Vet Res Commun 29(2):97–100

    Article  Google Scholar 

  • Blé YC, Yobouet BA, Dadié A (2016) Consumption, proximate and mineral composition of edible frog Hoplobatrachus occipitalis from midwest areas of Côte d’Ivoire. AJSR 5(3):16–20

    Google Scholar 

  • Bressani R (1977) Función de las especies de animales menores en la nutrición y producción de alimentos. Boletin de la oficina sanitaria panamericana 1:206–215

    Google Scholar 

  • Cagiltay F, Erkan N, Selcuk O, Devrim Tosun S (2014) Chemical composition of wild and cultured marsh frog (Rana Ridibunda). Bulgarian J Agr Sci 20(5):1250–1254

    Google Scholar 

  • Çaklı Ş, Kışla D, Cadun A, Dinçer T, Cağlak E (2009) Determination of shelf life in fried and boiled frog meat stored in refrigerator in 3.2±1.08 C. J Fish Aquat Sci 26(2):115–119

    Google Scholar 

  • Caldironi HA, Manes ME (2006) Proximate composition, fatty acids and cholesterol content of meat cuts from tegu lizard Tupinambis merianae. J Food Compos Anal 19(6–7):711–714

    Article  CAS  Google Scholar 

  • Cawthorn DM, Hoffman LC (2016) Controversial cuisine: a global account of the demand, supply and acceptance of “unconventional” and “exotic” meats. Meat Sci 120:19–36

    Article  Google Scholar 

  • Černíková M, Gál R, Polášek Z, Janíček M, Pachlová V, Buňka F (2015) Comparison of the nutrient composition, biogenic amines and selected functional parameters of meat from different parts of Nile crocodile (Crocodylus niloticus). J Food Compos Anal 43:82–87

    Article  Google Scholar 

  • Chen CY, Huang CH (2015) Effects of dietary magnesium on the growth, carapace strength and tissue magnesium concentrations of soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res 46(9):2116–2123

    Article  CAS  Google Scholar 

  • Chen CY, Chen SM, Huang CH (2014) Dietary magnesium requirement of soft-shelled turtles, Pelodiscus sinensis, fed diets containing exogenous phytate. Aquaculture 432:80–84

    Article  CAS  Google Scholar 

  • Chen LP, Huang CH (2011) Effects of dietary β-carotene levels on growth and liver vitamin A concentrations of the soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res 42(12):1848–1854

    Article  CAS  Google Scholar 

  • Cortez CAB (2016) Estudio químico analítico de la grasa de iguana verde (Iguana iguana) y su efecto cicatrizante y antiinflamatorio sobre lesiones inducidas en ratas. Ágora Revista Científica 3(1):248–256

    Google Scholar 

  • Cossu ME, Gonzáles OM, Wawrzkiewicz M, Moreno D, Vieites CM (2007) Carcass and meat characterization of“ yacare overo”(Caiman latirostris) and“ yacare negro”(Caiman yacare). Braz J Vet Res Anim Sci 44(5):329–336

    Article  Google Scholar 

  • Daszak P, Schloege L, Louise M, Cronin A, Pokras M, Smith K, Picco A (2006) The global trade in amphibians: summary interim report of a CCM study in report of the consortium for conservation medicine. Consortium for Conservation Medicine, New York

    Google Scholar 

  • Davis BC, Kris-Etherton PM (2003) Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr 78:640–646

    Article  Google Scholar 

  • Delgado S, Nichols WJ (2005) Saving sea turtles from the ground up: awakening sea turtle conservation in northwestern Mexico. Marit Stud 4:89–104

    Google Scholar 

  • Gill CO (2007) Microbiological conditions of meats from large game animals and birds. Meat Sci 77:149–160

    Article  CAS  Google Scholar 

  • Gonçalves AA, Otta MCM (2008) Aproveitamento da carne da carcaça de rã-touro gigante no desenvolvimento de hambúrguer. Rev Bras Enga Pesca 3(2):7–15

    Google Scholar 

  • González, Olmedo G, Farnés OC, Martín MI, Fernández RD, Andreu GN, Martínez CD et al (2004) Cultural, social and nutritional values of sea turtles in Cuba. Research Report. Universidad de La Habana, Cuba.

    Google Scholar 

  • Guo SM, Huang CH (2013) Dietary zinc requirements of soft-shelled turtle, Pelodiscus sinensis, fed diet with soybean meal as the major protein source. J Fish Soc Taiwan 40(2):117–124

    CAS  Google Scholar 

  • Hernández-Hurtado PS, Nolasco-Soria H, Carrillo-Farnés O, Hernández-Hurtado H, de Quevedo-Machain RG, Casas-Andreu G et al (2018) Contributions to the nutrition of the American crocodile Crocodylus acutus (Cuvier, 1807) in captivity. Lat Am J Aquat Res 46(1):15–19

    Article  Google Scholar 

  • Hoffman LC (2008) The yield and nutritional value of meat from African ungulates, camelidae, rodents, ratites and reptiles. Meat Sci 80(1):94–100

    Article  CAS  Google Scholar 

  • Hoffman LC, Cawthorn D (2013) Exotic protein sources to meet all needs. Meat Sci 95(4):764–771

    Article  CAS  Google Scholar 

  • Hoffman LC, Fisher PP, Sales J (2000) Carcass and meat characteristics of the Nile crocodile (Crocodylus niloticus). J Sci Food Agric 80(3):390–396

    Article  CAS  Google Scholar 

  • Huang CH, Lin WY (1999) Effects of substituting fermented soybean meal for fish meal in diets on growth and body composition of soft-shelled turtle, Trionyx Sinensis. J Fish Soc Taiwan 4:225–232

    Google Scholar 

  • Huang CH, Lin WY (2002) Estimation of optimal dietary methionine requirement for softshell turtle, Pelodiscus sinensis. Aquaculture 207(3–4):281–287

    Article  CAS  Google Scholar 

  • Huang CH, Lin WY (2004) Effects of dietary vitamin E level on growth and tissue lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res 35(10):948–954

    Article  CAS  Google Scholar 

  • Huang CH, Lin WY, Chu JH (2005) Dietary lipid level influences fatty acid profiles, tissue composition, and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis. Comp Biochem Physiol A Mol Integr Physiol 142(3):383–388

    Article  Google Scholar 

  • Khan B, Tansel B (2000) Mercury bioconcentration factors in American alligators (Alligator mississippiensis) in the Florida Everglades. Ecotoxicol Environ Saf 47(1):54–58

    Article  CAS  Google Scholar 

  • Klein G, Andreoletti O, Budka H, Buncic S, Colin P, Collins JD et al (2007) Public health risks involved in the human consumption of reptile meat scientific opinion of the panel on biological hazards. EFSA J 578:1–55

    Google Scholar 

  • Klemens MW, Thorbjarnarson JB (1995) Reptiles as a food resource. Biodivers Conserv 4(3):281–298

    Article  Google Scholar 

  • Lee SML, Wong WP, Hiong KC, Loong AM, Chew SF, Ip YK (2006) Nitrogen metabolism and excretion in the aquatic Chinese soft-shell turtle, Pelodiscus sinensis, exposed to a progressive increase in ambient salinity. J Exp Zool 305A:995–1009

    Article  CAS  Google Scholar 

  • Madsen M, Milne JAC, Chambers P (1992) Critical control points in the slaughter and dressing of farmed crocodiles. J Food Sci Technol 29:265–267

    Google Scholar 

  • Magnino S, Colin P, Dei-Cas E, Madsen M, McLauchlin J, Nöckler K et al (2009) Biological risks associated with consumption of reptile products. Int J Food Microbiol 134(3):163–175

    Article  CAS  Google Scholar 

  • Mancini A, Koch V (2009) Sea turtle consumption and black market trade in Baja California Sur, Mexico. Endanger Species Res 7:1–10

    Article  Google Scholar 

  • Mbete RA, Banga-Mboko H, Racey P, Mfoukou-Ntsakala A, Nganga I, Vermeulen C et al (2011) Household bushmeat consumption in Brazzaville, the Republic of the Congo. Trop Conserv Sci 4:187–202

    Article  Google Scholar 

  • Mohneke M, Onadeko AB, Rödel MO (2009) Exploitation of frogs–a review with a focus on West Africa. Salamandra 45(4):193–202

    Google Scholar 

  • Muhammad NO, Ajiboye B (2010) Nutrient composition of Rana galamensis. Afr J Food Sci Technol 1(1):27–30

    Google Scholar 

  • Natusch DJD, Lyons JA (2014) Assessment of python breeding farms supplying the international high-end leather industry. A report under the ‘Python Conservation Partnership’ programme of research. Occasional Paper of the IUCN Species Survival Commission No. 50. Gland, Switzerland: IUCN

    Google Scholar 

  • Neto JV, Bressan MC, Rodrigues EC, Kloster MA, Santana MTA (2007) Avaliação físico química da carne de jacaré-do-pantanal (Caiman yacare Daudin 1802) de idades diferentes. Ciência e Agrotecnologia 31(5):1430–1434

    Article  Google Scholar 

  • Neveu A (2004) La raniculture estelle une alternative à la récolte? État actuel en France. INRA Prod Anim 17(3):167–175

    Google Scholar 

  • Neveu A (2009) Suitability of European green frogs for intensive culture: comparison between different phenotypes of the esculenta hybridogenetic complex. Aquaculture 295:30–37

    Article  Google Scholar 

  • Nobrega IC, Ataíde CS, Moura OM, Livera AV, Menezes PH (2007) Volatile constituents of cooked bullfrog (Rana catesbeiana) legs. Food Chem 102(1):186–191

    Article  CAS  Google Scholar 

  • NRC (National Research Council) (1991) Micro-livestock: little-known small animals with a promising economic future. National Academy Press, Washington, DC

    Google Scholar 

  • Nuangsaeng BA, Boonyaratapalin M (2001) Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann. Aquac Res 32:106–111

    Article  CAS  Google Scholar 

  • Ockerman HW, Basu L (2009) Undomesticated food animals hunted and used for food. In: Agricultural Sciences – Vol. I – Undomesticated food animals hunted and used for food. Edited by Rattan Lal. Eolss Publishers Co. Oxford, UK. pp: 232–249

    Google Scholar 

  • Oduntan OO, Soaga JA, Jenyo-Oni A (2012) Comparison of edible frog (Rana esculenta) and other bush meat types: proximate composition, social status and acceptability. J Environ Res Manag 3(7):124–128

    Google Scholar 

  • Ogungbenle HN, Adaraniwon PT (2013) Chemical and functional properties of roasted spitting cobra (N. nigricollis). Bangladesh J Sci Ind Res 48(3):197–200

    Article  Google Scholar 

  • Ojewola GS, Udom SF (2005) Chemical evaluation of the nutrient composition of some unconventional animal protein sources. Int J Poult Sci 4(10):745–747

    Article  Google Scholar 

  • Olvera-Novoa MA, Ontiveros-Escutia VM, Flores-Nava A (2007) Optimum protein level for growth in juvenile bullfrog (Rana catesbeiana Shaw, 1802). Aquaculture 266(1–4):191–199

    Article  CAS  Google Scholar 

  • Onadeko AB, Egonmwan RI, Saliu JK (2011) Edible amphibian species: local knowledge of their consumption in southwest Nigeria and their nutritional value. West Afr J App Ecol 19(1):67–76

    Google Scholar 

  • Osthoff G, Hugo A, Bouwman H, Buss P, Govender D, Joubert CC, Swarts JC (2010) Comparison of the lipid properties of captive, healthy wild, and pansteatitis-affected wild Nile crocodiles (Crocodylus niloticus). Comp Biochem Physiol A Mol Integr Physiol 155(1):64–69

    Article  Google Scholar 

  • Özogul F, Özogul Y, Olgunoglu AI, Boga EK (2008) Comparison of fatty acid, mineral and proximate composition of body and legs of edible frog (Rana esculenta). Int J Food Sci Nutr 59(7–8):558–565

    Article  Google Scholar 

  • Özyurt G, Etyemez M (2015) Changes of fatty acid composition in frog legs (Rana esculenta) during cold storage period: irradiation effect. J Aquat Food Prod Technol 24(5):481–489

    Article  Google Scholar 

  • Panella F, Cossu ME, Vieites CM, Gonzalez OM (2003) Carne de lagarto overo (Tupinambis merianae) y yacaré (Caiman yacare y latirostris). Calidad comparativa. Rev Arg Prod Anim 23(1):355–356

    Google Scholar 

  • Peplow A, Balaban M, Leak F (1990) Lipid composition of fat trimmings from farm-raised alligator. Aquaculture 91(3–4):339–348

    Article  CAS  Google Scholar 

  • Rodrigues EC, Bressan MC, Neto JV, Oliveira J, Faria PB, Ferrão SPB, Andrade PL (2007) Quality and chemistry composition of comercial cuts of alligator swanpland meat (Cayman yacare). Ciência e Agrotecnologia 31(2):448–455

    Article  CAS  Google Scholar 

  • Romanelli PF, Caseri R, Lopes Filho JF (2002) Processamento da Carne do Jacaré do Pantanal (Caiman crocodilus yacare). Food Sci Technol (Campinas) 22(1):70–75

    Article  Google Scholar 

  • Saadoun A, Cabrera MC (2008) A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Sci 80(3):570–581

    Article  CAS  Google Scholar 

  • Shearer KD, Åsgård T, Andorsdöttir G, Aas GH (1994) Whole body elemental and proximate composition of Atlantic salmon (Salmo salar) during the life cycle. J Fish Biol 44(5):785–797

    Article  Google Scholar 

  • Shine R (1986) Predation upon filesnakes (Acrochordus arafurae) by aboriginal hunters: selectivity with respect to size, sex and reproductive condition. Copeia 1886:238–239

    Article  Google Scholar 

  • Suyama M, Hirano T, Sato K, Fukuda H (1979) Nitrogenous constituents of meat extract of fresh-water softshell turtle. Bull Jpn Soc Sci Fish 45(5):595–599

    Article  CAS  Google Scholar 

  • Tokur B, Gürbüz RD, Özyurt G (2008) Nutritional composition of frog (Rana esculanta) waste meal. Bioresour Technol 99:1332–1338

    Article  CAS  Google Scholar 

  • Uhart M, Milano F (2002) Multiple species production systems. Reversing underdevelopment and nonsustainability in Latin America. Ann N Y Acad Sci 969:20–23

    Article  Google Scholar 

  • United Nations Department of Economics and Social Affairs (2017) Population Division. World population prospects: The 2017 revision. https://esa.un.org/unpd/wpp/Graphs/DemographicProfiles/ (Consulted on 15 of September 2018)

  • Vega Parry H, Alonso T, Caldironi H, Manes ME (2013) Composition of neutral lipids and phospholipids in tegu lizard Tupinambis merianae fat bodies. Revista Argentina de Producción Animal 33(2):129–137

    Google Scholar 

  • Villamizar VM (2007) Análisis bromatológico de la carne de la iguana verde (Iguana iguana) de los sectores de Minca, Bonda y Mamatoco (Santa Marta DTCH) y Fonseca (La Guajira). Duazary: Revista Internacional de Ciencias de la Salud 4(1):30–37

    Google Scholar 

  • Wang CC, Huang CH (2015) Effects of dietary vitamin C on growth, lipid oxidation, and carapace strength of soft-shelled turtle, Pelodiscus sinensis. Aquaculture 445(1–4):1–4

    Article  CAS  Google Scholar 

  • Wang J, Qi Z, Yang Z (2014) Evaluation of the protein requirement of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis, Wiegmann) fed with practical diets. Aquaculture 433:252–255

    Article  CAS  Google Scholar 

  • WHO (2007) WHO technical report series 935: protein and amino acid requirements in human nutrition: report of a joint- WHO/FAO/UNU expert consultation. World Health Organization. WHO Press, Geneva, p 150

    Google Scholar 

  • Wu GS, Huang CH (2008) Estimation of dietary copper requirement of juvenile soft-shelled turtles, Pelodiscus sinensis. Aquaculture 280(1–4):206–210

    Article  CAS  Google Scholar 

  • Yang A, Cheng F, Tong P, Chen H (2017) Effect of tea polyphenol and nisin on the quality of tortoise (Trachemys scripta elegans) meat during chilled storage. J Food Process Preserv 41(6):e13308

    Article  Google Scholar 

  • Zhou F, Ding XY, Feng H, Xu YB, Xue HL, Zhang JR, Ng WK (2013) The dietary protein requirement of a new Japanese strain of juvenile Chinese soft shell turtle, Pelodiscus sinensis. Aquaculture 412:74–80

    Article  Google Scholar 

  • Zhou XX, Wang L, Feng H, Guo QL, Dai HP (2011) Acute phase response in Chinese soft-shell turtle (Trionyx sinensis) with Aeromonas hydrophila infection. Dev Comp Immunol 35:441–451

    Article  CAS  Google Scholar 

  • Zou Y, Ai Q, Mai K, Zhang W, Zhang Y, Xu W (2012) Effects of brown fish meal replacement with fermented soybean meal on growth performance, feed efficiency and enzyme activities of Chinese soft-shelled turtle, Pelodiscus sinensis. J Ocean Univ China 11(2):227–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Paulo E. S. Munekata acknowledges postdoctoral fellowship support from Ministry of Economy and Competitiveness (MINECO, Spain) “Juan de la Cierva” program (FJCI-2016-29486). José M. Lorenzo and Paulo E. S. Munekata are members of the MARCARNE network, funded by CYTED (ref.116RT0503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Domínguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domínguez, R., Pateiro, M., Munekata, P.E.S., Gagaoua, M., Barba, F.J., Lorenzo, J.M. (2019). Exotic Meats: An Alternative Food Source. In: Lorenzo, J., Munekata, P., Barba, F., Toldrá, F. (eds) More than Beef, Pork and Chicken – The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet. Springer, Cham. https://doi.org/10.1007/978-3-030-05484-7_13

Download citation

Publish with us

Policies and ethics