Skip to main content

Gene Selection for Microarray Data Classification Using Hybrid Meta-Heuristics

  • Conference paper
  • First Online:
Modelling and Implementation of Complex Systems (MISC 2018)

Abstract

The hybridization of metaheuristics got a lot of interest lately. The crucial step lies in the choice of the hybrid methods. The major purpose is to make a tradeoff between exploitation and exploration concepts to create a more robust method. Hybrid metaheuristics are used as a solution to many optimization problems such as feature selection. In this paper we propose an hybridization between metaheuristics (PeSOA, FA, DE, AIS, BAT) for a best gene selection in microarray datasets. The main objective is to prove the efficiency of the proposed hybridization compared to the hybrid methods. The experimentations showed that PeSOA-C and HFA were competitive to their hybrid methods, on the other side, AIS-BAT was less promising compared to AIS. As results, we obtained a perfect 100% in case of Leukemia, Ovarian Cancer, Lymphoma and MLL-Leukemia datasets by the HFA hybridization with only 2%–4% of selected genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrington, C.A., Rosenow, C., Retief, J.: Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3(3), 285–291 (2000)

    Article  Google Scholar 

  2. van Hal, N.L., Vorst, O., van Houwelingen, A.M., Kok, E.J., Peijnenburg, A., Aharoni, A.,., Keijer, J., : The application of DNA microarrays in gene expression analysis. J. Biotechnol. 78(3), 271–280 (2000)

    Google Scholar 

  3. Michiels, S., Koscielny, S., Hill, C.: Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365(9458), 488–492 (2005)

    Article  Google Scholar 

  4. Cho, S.B., Won, H.H.: Machine learning in DNA microarray analysis for cancer classification. In: Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics, vol. 19, pp. 189–198. Australian Computer Society, Inc. (2003)

    Google Scholar 

  5. Mao, Z., Cai, W., Shao, X.: Selecting significant genes by randomization test for cancer classification using gene expression data. J. Biomed. Inform. 46(4), 594–601 (2013)

    Article  Google Scholar 

  6. Zhang, H., Li, L., Luo, C., Sun, C., Chen, Y., Dai, Z., Yuan, Z.: Informative gene selection and direct classification of tumor based on chi-square test of pairwise gene interactions. BioMed Res. Int. (2014)

    Google Scholar 

  7. Sharbaf, F.V., Mosafer, S., Moattar, M.H.: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6), 231–238 (2016)

    Article  Google Scholar 

  8. Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE Congress on 2007 Evolutionary Computation, CEC 2007, pp. 284–290. IEEE (2007)

    Google Scholar 

  9. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  10. Maldonado, S., Weber, R.: A wrapper method for feature selection using support vector machines. Inf. Sci. 179(13), 2208–2217 (2009)

    Article  Google Scholar 

  11. Apolloni, J., Leguizamn, G., Alba, E.: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl. Soft Comput. 38, 922–932 (2016)

    Article  Google Scholar 

  12. Anaissi, A., Kennedy, P.J., Goyal, M.: Feature selection of imbalanced gene expression microarray data. In: 2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/distributed Computing (snpd), pp. 73–78. IEEE (2011)

    Google Scholar 

  13. Siedlecki, W., Sklansky, J.: On automatic feature selection. In: Handbook of Pattern Recognition and Computer Vision, pp. 63–87 (1993)

    Google Scholar 

  14. Liu, H., Setiono, R.: A probabilistic approach to feature selection-a filter solution. In: ICML, vol. 96, pp. 319–327 (1996)

    Google Scholar 

  15. Zhong, N., Dong, J., Ohsuga, S.: Using rough sets with heuristics for feature selection. J. Intell. Inf. Syst. 16(3), 199–214 (2001)

    Article  MATH  Google Scholar 

  16. Li, Y., Wang, G., Chen, H., Shi, L., Qin, L.: An ant colony optimization based dimension reduction method for high-dimensional datasets. J. Bionic Eng. 10(2), 231–241 (2013)

    Article  Google Scholar 

  17. Jona, J.B., Nagaveni, N.: Ant-cuckoo colony optimization for feature selection in digital mammogram. Pak. J. Biol. Sci. 17(2), 266 (2014)

    Article  Google Scholar 

  18. Prasad, Y., Biswas, K.K (eds.): In: AAAI, pp. 4288–4289 (2015)

    Google Scholar 

  19. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers operations research 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dif, N., Elberrichi, Z.: Microarray data feature selection and classification using an enhanced multi-verse optimizer and support vector machine (2017)

    Google Scholar 

  21. Yang, K., Cai, Z., Li, J., Lin, G.: A stable gene selection in microarray data analysis. BMC Bioinform. 7(1), 228 (2006)

    Article  Google Scholar 

  22. Das, K., Mishra, D., Shaw, K.: A metaheuristic optimization framework for informative gene selection. Inform. Med. Unlocked 4, 10–20 (2016)

    Article  Google Scholar 

  23. Alshamlan, H.M., Badr, G.H., Alohali, Y.A.: Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification. Comput. Biol. Chem. 56, 49–60 (2015)

    Article  Google Scholar 

  24. Zhu, Z., Ong, Y.S., Dash, M.: Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognit. 40(11), 3236–3248 (2007)

    Article  MATH  Google Scholar 

  25. Deepthi, P.S., Thampi, S.M.: A metaheuristic approach for simultaneous gene selection and clustering of microarray data. Intell. Syst. Technol. Appl., pp. 449–461. Springer, Cham (2016)

    Google Scholar 

  26. Talbi, E.G., Jourdan, L., Garcia-Nieto, J., Alba, E.: Comparison of population based metaheuristics for feature selection: application to microarray data classification. In: 2008 IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2008, pp. 45–52. IEEE (2008)

    Google Scholar 

  27. Chen, K.H., Wang, K.J., Tsai, M.L., Wang, K.M., Adrian, A.M., Cheng, W.C., Chang, K.S.: Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinform. 15(1), 49 (2014)

    Google Scholar 

  28. Dashtban, M., Balafar, M.: Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts. Genomics 109(2), 91–107 (2017)

    Article  Google Scholar 

  29. Lv, J., Peng, Q., Chen, X., Sun, Z.: A multi-objective heuristic algorithm for gene expression microarray data classification. Expert. Syst. Appl. 59, 13–19 (2016)

    Article  Google Scholar 

  30. Boucheham, A., Batouche, M., Meshoul, S.: An ensemble of cooperative parallel metaheuristics for gene selection in cancer classification. In: International Conference on Bioinformatics and Biomedical Engineering, pp. 301–312. Springer, Cham (2015)

    Google Scholar 

  31. Storn, R., Price, K.: Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  Google Scholar 

  32. Do, D.T., Lee, S., Lee, J.: A modified differential evolution algorithm for tensegrity structures. Compos. Struct. 158, 11–19 (2016)

    Article  Google Scholar 

  33. Khushaba, R.N., Al-Ani, A., Al-Jumaily, A.: Differential evolution based feature subset selection. In: 2008 19th International Conference on Pattern Recognition. ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  34. Sikdar, U.K., Ekbal, A., Saha, S.: Differential evolution based feature selection and classifier ensemble for named entity recognition. Proc. COLING 2012, 2475–2490 (2012)

    Google Scholar 

  35. Chattopadhyay, S., Mishra, S., Goswami, S.: Feature selection using differential evolution with binary mutation scheme, pp. 1–6. IEEE (2016)

    Google Scholar 

  36. Shojaie, S., Moradi, M.H.: An evolutionary artificial immune system for feature selection and parameters optimization of support vector machines for ERP assessment in a P300-based GKT. In: 2008 Biomedical Engineering Conference, CIBEC 2008, Cairo International, pp. 1–5. IEEE (2008)

    Google Scholar 

  37. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)

    Google Scholar 

  38. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Heidelberg (2010)

    Google Scholar 

  39. Mishra, S., Shaw, K., Mishra, D.: A new meta-heuristic bat inspired classification approach for microarray data. Procedia Technol. 4, 802–806 (2012)

    Article  Google Scholar 

  40. Gheraibia, Y., Moussaoui, A.: Penguins search optimization algorithm (PeSOA). In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 222–231. Springer, Heidelberg (2013)

    Google Scholar 

  41. Mzili, I., Riffi, M.E.: Discrete penguins search optimization algorithm to solve the traveling salesman problem. J. Theor. Appl. Inf. Technol. 72(3) (2015)

    Google Scholar 

  42. Gheraibia, Y., Moussaoui, A., Djenouri, Y., Kabir, S., Yin, P.Y.: Penguins search optimisation algorithm for association rules mining. J. Comput. Inf. Technol. 24(2), 165–179 (2016)

    Article  Google Scholar 

  43. Bidi, N., Elberrichi, Z.: Using Penguins search optimization algorithm for best features selection for biomedical data classification. Int. J. Organ. Collect. Intell. (IJOCI) 7(4), 51–62 (2017)

    Article  Google Scholar 

  44. Zhang, L., Liu, L., Yang, X.S., Dai, Y.: A novel hybrid firefly algorithm for global optimization. PloS One 11(9), e0163230 (2016)

    Article  Google Scholar 

  45. Mazen, F., Abul Seoud, R.A., Gody, A.M.: Genetic algorithm and firefly algorithm in a hybrid approach for breast cancer diagnosis. Int. J. Comput. Trends Technol. (IJCTT) 32, (2) (2016)

    Google Scholar 

  46. Fister Jr, I., Fister, D., Yang, X.S.: A hybrid bat algorithm (2013). arXiv preprint arXiv:1303.6310

  47. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  48. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Bloomfield, C.D.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Google Scholar 

  49. Van’t Veer, L.J., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530 (2002)

    Google Scholar 

  50. Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Loda, M.: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98(24), 13790–13795 (2001)

    Google Scholar 

  51. Petricoin III, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Liotta, L.A.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002)

    Google Scholar 

  52. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Powell, J. I.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503 (2000)

    Google Scholar 

  53. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Korsmeyer, S. J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41 (2002)

    Google Scholar 

  54. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Meltzer, P. S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673 (2001)

    Google Scholar 

  55. Aziz, R., Verma, C.K., Srivastava, N.: A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genomics Data 8, 4–15 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassima Dif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dif, N., Attaoui, M.w., Elberrichi, Z. (2019). Gene Selection for Microarray Data Classification Using Hybrid Meta-Heuristics. In: Chikhi, S., Amine, A., Chaoui, A., Saidouni, D.E. (eds) Modelling and Implementation of Complex Systems. MISC 2018. Lecture Notes in Networks and Systems, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-030-05481-6_9

Download citation

Publish with us

Policies and ethics