Skip to main content

Characterizing Temporal Bipartite Networks - Sequential- Versus Cross-Tasking

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

Abstract

Temporal bipartite networks that describe how users interact with tasks or items over time have recently become available. Such temporal information allows us to explore user behavior in-depth. We propose two metrics, the relative switch frequency and distraction in time to measure a user’s sequential-tasking level, i.e. to what extent a user interacts with a task consecutively without interacting with other tasks in between. We analyze the sequential-tasking level of users in two real-world networks, an user-project and an user-artist network that record users’ contribution to software projects and users’ playing of musics from diverse artists respectively. We find that users in the user-project network tend to be more sequential-tasking than those in the user-artist network, suggesting a major difference in user behavior when subject to work related and hobby-related tasks. Moreover, we investigate the relation (rank correlation) between the two sequential-tasking measures and another 10 nodal features. Users that interact less frequently or more regularly in time (low deviation in the time interval between two interactions) or with fewer items tend to be more sequential-tasking in the user-project network. No strong correlation has been found in the user-artist network, which limits our ability to identify sequential-tasking users from other user features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. www.last.fm

  2. Zhou, T., Ren, J., Medo, M., Zhang, Y.-C.: Bipartite network projection and personal recommendation. Phys. Rev. E 76, 046115 (2007)

    Article  Google Scholar 

  3. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–126 (2012)

    Article  Google Scholar 

  4. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)

    Article  Google Scholar 

  5. Karsai, M., et al.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Google Scholar 

  6. Lambiotte, R., Tabourier, L., Delvenne, J.C.: Burstiness and spreading on temporal networks (2013). arXiv preprint arXiv:1305.0543

  7. Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and aging in social temporal networks. Phys. Rev. Lett. 114, 108701 (2015)

    Article  Google Scholar 

  8. Zhan, X.X., Hanjalic, A., Wang, H.: Information diffusion backbones in temporal networks (2018). arXiv preprint arXiv:1804.09483

  9. Li, C., Li, Q., Van Mieghem, P., Stanley, H.E., Wang, H.: Correlation between centrality metrics and their application to the opinion model. Eur. Phys. J. B 88, 65 (2015)

    Google Scholar 

  10. Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013)

    Google Scholar 

  11. Huang, X., Shao, S., Wang, H., Buldyrev, S.V., Stanley, H.E., Havlin, S.: The robustness of interdependent clustered networks. Europhys. Lett. 101, 18002 (2013)

    Google Scholar 

  12. Liu, M., Li, D., Qin, P., Liu, C., Wang, H., Wang, F.: Epidemics in interconnected small-world networks. PloS One 3, e0120701 (2015)

    Article  Google Scholar 

  13. De Domenico, M., et al.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)

    Google Scholar 

  14. Wang, H., Douw, L., Hernández, J., Reijneveld, J., Stam, K., Van Mieghem, P.: Effect of tumor resection on the characteristics of functional brain networks. Phys. Rev. E 82, 021924 (2010)

    Google Scholar 

  15. Linux kernel mailing list threads network dataset – KONECT (2017)

    Google Scholar 

  16. Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  Google Scholar 

  17. Takaguchi, T., Nakamura, M., Sato, N., Yano, K., Masuda, N.: Predictability of conversation partners. Phys. Rev. X 1, 011008 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peters, L.J.J.M., Cai, JJ., Wang, H. (2019). Characterizing Temporal Bipartite Networks - Sequential- Versus Cross-Tasking. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_3

Download citation

Publish with us

Policies and ethics