Skip to main content

Consistent Approximation of Epidemic Dynamics on Degree-Heterogeneous Clustered Networks

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 812))

Abstract

Realistic human contact networks capable of spreading infectious disease, for example studied in social contact surveys, exhibit both significant degree heterogeneity and clustering, both of which greatly affect epidemic dynamics. To understand the joint effects of these two network properties on epidemic dynamics, the effective degree model of Lindquist et al. [28] is reformulated with a new moment closure to apply to highly clustered networks. A simulation study comparing alternative ODE models and stochastic simulations is performed for SIR (Susceptible–Infected–Removed) epidemic dynamics, including a test for the conjectured error behaviour in [40], providing evidence that this novel model can be a more accurate approximation to epidemic dynamics on complex networks than existing approaches.

Work supported by the Engineering and Physical Sciences Research Council Grant numbers EP/I01358X/1 and EP/N033701/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ball, F.: Stochastic and deterministic models for SIS epidemics among a population partitioned into households. Math. Biosci. 156(1), 41–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, F., Neal, P.: Network epidemic models with two levels of mixing. Math. Biosci. 212(1), 69–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, S., Khandelwal, S., Meyers, L.A.: Exploring biological network structure with clustered random networks. BMC Bioinform. 10(1), 405 (2009)

    Article  Google Scholar 

  4. Barbour, A., Reinert, G.: Approximating the epidemic curve. Electron. J. Probab. 18(54), 1–30 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bohman, T., Picollelli, M.: SIR epidemics on random graphs with a fixed degree sequence. Random Struct. Algorithms 41(2), 179–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danon, L., Ford, A.P., House, T., Jewell, C.P., Keeling, M.J., Roberts, G.O., Ross, J.V., Vernon, M.C:: Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011 (2011)

    Google Scholar 

  7. Decreusefond, L., Dhersin, J.S., Moyal, P., Tran, V.C.: Large graph limit for an SIR process in random network with heterogeneous connectivity. Ann. Appl. Probab. 22(2), 541–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Del Genio, C.I., House, T.: Endemic infections are always possible on regular networks. Phys. Rev. E 88, 040,801 (2013)

    Article  Google Scholar 

  9. Del Genio, C.I., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PloS one 5(4), e10,012 (2010)

    Article  Google Scholar 

  10. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)

    Article  MATH  Google Scholar 

  11. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  12. Gleeson, J.P.: Bond percolation on a class of clustered random networks. Phys. Rev. E 80(3), 036107 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gleeson, J.P.: Binary-state dynamics on complex networks: pair approximation and beyond. Phys. Rev. X 3(2), 021004 (2013)

    Google Scholar 

  14. Green, D., Kiss, I.: Large-scale properties of clustered networks: Implications for disease dynamics. J. Biol. Dyn. 4(5), 431–445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. House, T.: Generalised network clustering and its dynamical implications. Adv. Complex Syst. 13(3), 281–291 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. House, T., Davies, G., Danon, L., Keeling, M.J.: A motif-based approach to network epidemics. Bull. Math. Biol. 71(7), 1693–1706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. House, T., Keeling, M.J.: The impact of contact tracing in clustered populations. PLoS Comput. Biol. 6(3), e1000721 (2010)

    Article  MathSciNet  Google Scholar 

  18. House, T., Keeling, M.J.: Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface 8(54), 67–73 (2011)

    Article  Google Scholar 

  19. Janson, S., Luczak, M., Windridge, P.: Law of large numbers for the SIR epidemic on a random graph with given degrees. Random Struct. Algorithms 45(4), 726–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karrer, B., Newman, M.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82, 066,118 (2010)

    Article  MathSciNet  Google Scholar 

  21. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. London. Ser. B: Biol. Sci. 266(1421), 859–867 (1999)

    Article  Google Scholar 

  22. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. R. Soc. Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  23. Keeling, M.J., House, T., Cooper, A.J., Pellis, L.: Systematic approximations to susceptible-infectious-susceptible dynamics on networks. PLOS Comput. Biol. 12(12), e1005,296 (2016)

    Article  Google Scholar 

  24. Kermack, W., McKendrick, A.: Wo kermack and ag mckendrick, proc. r. soc. london, ser. a 115, 700 (1927). Proc. R. Soc. London, Ser. A 115, 700 (1927)

    Google Scholar 

  25. Kirkwood, J.G., Boggs, E.M.: The radial distribution function in liquids. J. Chem. Phys. 10(6), 394–402 (1942)

    Article  Google Scholar 

  26. Kiss, I.Z., Green, D.M.: Comment on ‘properties of highly clustered networks’. Phys. Rev. E 78(4), 048101 (2008)

    Article  Google Scholar 

  27. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  28. Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.: Effective degree network models. J. Math. Biol. 62, 143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.H.: Effective degree network disease models. J. Math. Biol. 62(2), 143–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, J., Slim, A., Volz, E.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), 890–906 (2012)

    Article  Google Scholar 

  31. Miller, J.C.: Percolation and epidemics in random clustered networks. Phys. Rev. E 80(2), 020,901 (2009)

    Article  MathSciNet  Google Scholar 

  32. Miller, J.C.: A note on a paper by Erik Volz: SIR dynamics in random networks. J. Math. Biol. 62(3), 349–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface, rsif20110403 (2011)

    Google Scholar 

  34. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), 890–906 (2012)

    Article  Google Scholar 

  35. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newman, M.: Networks : An Introduction. Oxford University Press, Oxford (2009)

    Google Scholar 

  37. Newman, M.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058701 (2009)

    Article  Google Scholar 

  38. Newman, M.E.: Properties of highly clustered networks. Phys. Rev. E 68(2), 026121 (2003)

    Article  Google Scholar 

  39. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks (2014). arXiv preprint arXiv:1408.2701

  40. Pellis, L., House, T., Keeling, M.J.: Exact and approximate moment closures for non-Markovian network epidemics. J. Theor. Biol. 382, 160–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rand, D.: Correlation equations and pair approximations for spatial ecologies. Adv. Ecol. Theory: Princ. Appl. 100 (1999)

    Google Scholar 

  42. Rand, D.: Advanced ecological theory: principles and applications, chap. Correlation equations and pair approximations for spatial ecologies, pp. 100–142. Wiley, New York (2009)

    Google Scholar 

  43. Ritchie, M., Berthouze, L., House, T., Kiss, I.Z.: Higher-order structure and epidemic dynamics in clustered networks. J. Theor. Biol. 348, 21–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ritchie, M., Berthouze, L., Kiss, I.Z.: Beyond clustering: Mean-field dynamics on networks with arbitrary subgraph composition (2014). arXiv preprint arXiv:1405.6234

  45. Rogers, T.: Maximum-entropy moment-closure for stochastic systems on networks. J. Stat. Mech.: Theory Exp. 2011(05), P05,007 (2011)

    Article  Google Scholar 

  46. Serrano, M.A., Boguñá, M.: Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett. 97, 088,701 (2006)

    Article  Google Scholar 

  47. Simon, P., Taylor, M., Kiss, I.: Exact epidemic models on graphs using graph automorphism driven lumping. J. Math. Biol. 62, 479–508 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Taylor, M., Simon, P.L., Green, D.M., House, T., Kiss, I.Z.: From markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol. 64(6), 1021–1042 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Volz, E., Miller, J., Galvani, A., Ancel-Meyers, L.: Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput. Biol. 7(6), e1002042 (2011)

    Article  MathSciNet  Google Scholar 

  50. Volz, E.M.: SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56(3), 293–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. House .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bishop, A., Kiss, I.Z., House, T. (2019). Consistent Approximation of Epidemic Dynamics on Degree-Heterogeneous Clustered Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_31

Download citation

Publish with us

Policies and ethics