Skip to main content

Preparation and Characterization of Antibacterial Sustainable Nanocomposites

  • Chapter
  • First Online:

Abstract

Nanoparticles show high toxicity towards various pathogenic microbes, however, the control over their release and/or release rate has been the major subject in research. Over the past decade’s research has escalated on the use of the polymeric material as the host to hold the nanoparticles in order to control their release rate. Biopolymers, owing to their unique properties such as biodegradability, renewability, and recyclability have been used as host matrices for various nanoparticles. Different processing techniques such as melt compounding and solution casting were employed to fabricate polymer nanocomposites. In this chapter, we reviewed the preparation and characterization of sustainable antimicrobial nanocomposites, the strategies to enhance their antibacterial activity as well as future prospects of these interesting materials. We also highlight the preparation of different antibacterial nanoparticles and recent developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdel Rahim K, Mahmoud SY, Ali AM et al (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.02.025

  2. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour Technol. https://doi.org/10.1016/j.reffit.2017.03.002

  3. An X, Ma H, Liu B, Wang J (2013) Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites. J Nanomater. https://doi.org/10.1155/2013/373414

  4. Ana MD, Angel LD (2014) ZnO-reinforced poly (3-hydroxybutyrate- co -3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. J Mol Sci, Int. https://doi.org/10.3390/ijms150610950

    Book  Google Scholar 

  5. Agustin YE, Padmawijara (2017) Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch. https://doi.org/10.1088/1757-899x/223/1/012046

  6. Augustine R, Malik HN, Singhal DK, et al (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res. https://doi.org/10.1007/s10965-013-0347-6

  7. Baheri B, Shahverdi M, Rezakazemi M et al (2015) Performance of PVA/NaA Mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321. https://doi.org/10.1080/00986445.2013.841149

    Article  CAS  Google Scholar 

  8. Bayer IS (2017) Thermomechanical properties of polylactic review for biomedical applications. https://doi.org/10.3390/ma10070748

  9. Botlhoko OJ, Ramontja J, Ray SS (2017) Thermally shocked graphene oxide-containing biocomposite for thermal management applications. RSC Adv 7:33751–33756. https://doi.org/10.1039/c7ra05421a

    Article  CAS  Google Scholar 

  10. Castro-Mayorga J, Fabra M, Cabedo L, Lagaron J (2016) On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials. https://doi.org/10.3390/nano7010004

  11. Castro Mayorga JL, Fabra Rovira MJ, Cabedo Mas L et al (2018) Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J Appl Polym Sci. https://doi.org/10.1002/app.45673

  12. Chandra S, Kumar A, Tomar PK (2014) Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 18:149–153. https://doi.org/10.1016/j.jscs.2011.06.009

    Article  CAS  Google Scholar 

  13. Chen H, Wang B, Gao D et al (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. 2735–2746. https://doi.org/10.1002/smll.201202792

  14. Chu Z, Zhao T, Li L et al (2017) Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials (Basel). https://doi.org/10.3390/ma10060659

  15. Chung IM, Rahuman AA, Marimuthu S et al (2017) Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. 18–24. https://doi.org/10.3892/etm.2017.4466

  16. De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res. Int. https://doi.org/10.1016/j.foodres.2009.03.019

  17. De Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol https://doi.org/10.1016/j.tifs.2012.11.006

  18. Din MI, Arshad F, Hussain Z, Mukhtar M (2017) Green adeptness in the synthesis and stabilization of copper nanoparticles : catalytic, antibacterial, cytotoxicity, and antioxidant activities. https://doi.org/10.1186/s11671-017-2399-8

  19. El-ghany NAA (2017) Antimicrobial activity of new carboxymethyl chitosan–carbon nanotube biocomposites and their swell ability in different pH media. J Carbohydr Chem 0:1–14. https://doi.org/10.1080/07328303.2017.1353610

  20. Espinoza-go H, Alonso-nu G, Sua J (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 341–348. https://doi.org/10.1016/j.jscs.2016.10.005

  21. Geetha MS, Nagabhushana H, Shivananjaiah HN (2016) Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater Devices. https://doi.org/10.1016/j.jsamd.2016.06.015

  22. Gopinath V, Priyadarshini S, Loke MF et al (2017) Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.11.011

  23. Gopiraman M, Jatoi AW, Hiromichi S et al (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.04.084

  24. Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int. https://doi.org/10.1016/j.pnsc.2012.11.015

  25. Hasan SS, Singh S, Parikh RY, Dharne MS (2008) Bacterial synthesis of copper/copper oxide nanoparticles bacterial synthesis of copper/copper oxide nanoparticles. https://doi.org/10.1166/jnn.2008.095

  26. Huang KS, Yang CH, Huang SL et al (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578. https://doi.org/10.3390/ijms17091578

    Article  CAS  Google Scholar 

  27. José De Andrade C, Maria De Andrade L, Mendes MA, Oller Do Nascimento CA (2017) An overview on the production of microbial copper nanoparticles by bacteria, fungi and algae. Glob J Res Eng

    Google Scholar 

  28. Judith P, Espitia P (2012) Zinc oxide nanoparticles : synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 1447–1464. https://doi.org/10.1007/s11947-012-0797-6

  29. Kang S, Pinault M, Pfefferle LD et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673. https://doi.org/10.1021/la701067r

    Article  CAS  Google Scholar 

  30. Khan A, Rashid A, Younas R, Chong R (2015) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett. https://doi.org/10.1007/s40089-015-0163-6

  31. Li SM, Jia N, Ma MG, et al (2011) Cellulose-silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2011.04.060

  32. Li W, Zhang C, Chi H et al (2017) Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules. https://doi.org/10.3390/molecules22071170

  33. Li X, Xiao Y, Bergeret A, et al (2014) Preparation of polylactide/graphene composites from liquid-phase exfoliated graphite sheets. https://doi.org/10.1002/pc.22673

  34. Ma P, Jiang L, Yu M et al (2016) Green antibacterial nanocomposites from Poly (lactide)/Poly (butylene adipate -co-terephthalate)/nanocrystal cellulose-silver nanohybrids

    Google Scholar 

  35. Martynková GS, Valášková M (2014) Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2014.8903

  36. Mary G, Bajpai SK, Chand N (2009) Copper (II) Ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. https://doi.org/10.1002/app

  37. Matinise N, Fuku XG, Kaviyarasu K et al (2017) Applied Surface Science ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl Surf Sci 406:339–347. https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  CAS  Google Scholar 

  38. Mendoza G, Regiel-Futyra A, Andreu V et al (2017) Bactericidal effect of gold-chitosan nanocomposites in coculture models of pathogenic bacteria and human macrophages. ACS Appl Mater Interfaces 9:17693–17701. https://doi.org/10.1021/acsami.6b15123

    Article  CAS  Google Scholar 

  39. Mochane MJ, Luyt AS (2015) Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. J Mater Sci 50:3485–3494. https://doi.org/10.1007/s10853-015-8909-0

    Article  CAS  Google Scholar 

  40. Mochane MJ, Luyt AS (2015) The effect of expanded graphite on the thermal stability, latent heat, and flammability properties of EVA/wax phase change blends. Polym Eng Sci 55:1255–1262. https://doi.org/10.1002/pen.24063

    Article  CAS  Google Scholar 

  41. Mokhena TC, Jacobs NV, Luyt AS (2018) Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose 25. https://doi.org/10.1007/s10570-017-1541-1

  42. Mokhena TC, Jacobs V, Luyt AS (2015) A review on electrospun bio-based polymers for water treatment. Express Polym Lett 9. https://doi.org/10.3144/expresspolymlett.2015.79

  43. Mokhena TC, Luyt AS (2017) Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres. J Clean Prod 156:. https://doi.org/10.1016/j.jclepro.2017.04.073

  44. Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165. https://doi.org/10.1016/j.carbpol.2017.02.068

  45. Mondal D, Bhowmick B, Mollick MMR et al (2014) Antimicrobial activity and biodegradation behavior of poly(butylene adipate-co-terephthalate)/clay nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.40079

  46. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol, Sci

    Book  Google Scholar 

  47. Palza H, Quijada R, Delgado K (2015) Antimicrobial polymer composites with copper micro- and nanoparticles: effect of particle size and polymer matrix. J Bioact Compat Polym. https://doi.org/10.1177/0883911515578870

  48. Phogat N, Khan SA, Shankar S, et al (2016) Fate of inorganic nanoparticles in agriculture. Adv. Mater. Lett

    Google Scholar 

  49. Pinto RJB, Marques PAAP, Neto CP, et al (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater. https://doi.org/10.1016/j.actbio.2009.02.003

  50. Prabhu YT, Rao KV, Sai VS, Pavani T (2017) ORIGINAL ARTICLE A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc 21:180–185. https://doi.org/10.1016/j.jscs.2015.04.002

    Article  CAS  Google Scholar 

  51. Rapacz-Kmita A, Pierchała MK, Tomas-Trybuś A et al (2017) The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films. Acta Bioeng Biomech. https://doi.org/10.5277//abb-00820-2017-02

  52. Review CNA, Gonçalves C (2017) Poly (lactic acid) composites containing. 1–37. https://doi.org/10.3390/polym9070269

  53. Rezakazemi M, Dashti A, Riasat Harami H et al (2018) Fouling-resistant membranes for water reuse. Environ Chem Lett 1–49. https://doi.org/10.1007/s10311-018-0717-8

  54. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM et al (2014) State-of-the-art membrane based CO < inf > 2</inf > separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861. https://doi.org/10.1016/j.progpolymsci.2014.01.003

    Article  CAS  Google Scholar 

  55. Rezakazemi M, Khajeh A, Mesbah M (2017) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 1–22. https://doi.org/10.1007/s10311-017-0693-4

  56. Rezakazemi M, Mohammadi T (2013) Gas sorption in H < inf > 2</inf > -selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041. https://doi.org/10.1016/j.ijhydene.2013.08.062

    Article  CAS  Google Scholar 

  57. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems. J Memb Sci 379:224–232. https://doi.org/10.1016/j.memsci.2011.05.070

    Article  CAS  Google Scholar 

  58. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41. https://doi.org/10.1016/j.pecs.2017.11.002

    Article  Google Scholar 

  59. Rezakazemi M, Sadrzadeh M, Mohammadi T (2017b) Separation via pervaporation techniques through polymeric membranes

    Google Scholar 

  60. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells

    Google Scholar 

  61. Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284. https://doi.org/10.1016/j.ijhydene.2012.08.109

    Article  CAS  Google Scholar 

  62. Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589. https://doi.org/10.1016/j.ijhydene.2012.06.104

    Article  CAS  Google Scholar 

  63. Rezakazemi M, Shahidi K, Mohammadi T (2015) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 54:1542–1549. https://doi.org/10.1080/19443994.2014.887036

    Article  CAS  Google Scholar 

  64. Rezakazemi M, Shahverdi M, Shirazian S et al (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67. https://doi.org/10.1016/j.cej.2010.12.034

    Article  CAS  Google Scholar 

  65. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470. https://doi.org/10.1039/c5ra13609a

    Article  CAS  Google Scholar 

  66. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18. https://doi.org/10.1016/j.jngse.2016.01.033

    Article  CAS  Google Scholar 

  67. Rhim J-W, Hong S-K, Park H-M, N.g PKW (2006) Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. J. Agric. Food Chem. 54, 16, 5814-5822. https://doi.org/10.1021/jf060658h

  68. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2013.05.008

  69. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135. https://doi.org/10.1016/j.ijhydene.2012.10.069

    Article  CAS  Google Scholar 

  70. Sadeghi A, Nazem H, Rezakazemi M, Shirazian S (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287. https://doi.org/10.1016/j.molliq.2018.05.015

    Article  CAS  Google Scholar 

  71. Sadrzadeh M, Rezakazemi M, Mohammadi T (2017) Fundamentals and measurement techniques for gas transport in polymers

    Google Scholar 

  72. Laudenslager MJ, Schiffman JD, Schauer CL (2008) Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. 2682–2685. https://doi.org/10.1021/bm800835e

  73. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670. https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  CAS  Google Scholar 

  74. Satyvaldiev AS, Zhasnakunov ZK, Omurzak E, Doolotkeldieva TD, Bobusheva ST, Orozmatova GT, Kelgenbaeva Z (2018) Copper nanoparticles : synthesis and biological activity. https://doi.org/10.1088/1757-899x/302/1/012075

  75. Shahverdi M, Baheri B, Rezakazemi M et al (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493. https://doi.org/10.1002/pen.23406

    Article  CAS  Google Scholar 

  76. Shankar S, Rhim J (2016) LWT—food science and technology tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial pbat/silver nanoparticles composite films. LWT - Food Sci Technol 72:149–156. https://doi.org/10.1016/j.lwt.2016.04.054

    Article  CAS  Google Scholar 

  77. Shankar S, Wang LF, Rhim JW (2016) Preparations and characterization of alginate/silver composite films: effect of types of silver particles. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.03.026

  78. Shih CM, Shieh YT, Twu YK (2009) Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydr Polym 78:309–315. https://doi.org/10.1016/j.carbpol.2009.04.008

    Article  CAS  Google Scholar 

  79. Shittu KO, Bankole MT, Abdulkareem AS et al (2017) Application of gold nanoparticles for improved drug efficiency

    Google Scholar 

  80. Sothornvit R, Rhim JW, Hong SI (2009) Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2008.09.026

  81. Tsou CH, Yao WH, Lu YC, et al (2017) Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers (Basel) 9. https://doi.org/10.3390/polym9030100

  82. Vasile C, Râpă M, Ștefan M et al (2017) New PLA/ ZnO: Cu/ Ag bionanocomposites for food packaging. 11:531–544

    CAS  Google Scholar 

  83. Venkatesan R, Rajeswari N (2017) TiO2 nanoparticles/poly(butylene adipate‐co‐terephthalate) bionanocomposite films for packaging applications. https://doi.org/10.1002/pat.4042

  84. Venkatesan R, Rajeswari N, Tamilselvi A (2018) Antimicrobial, mechanical, barrier, and thermal properties of bio-based poly (butylene adipate-co-terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application. https://doi.org/10.1002/pat.4089

  85. Venkatesan R, Rajeswari N (2016) ZnO/PBAT nanocomposite films : investigation on the mechanical and biological activity for food packaging. https://doi.org/10.1002/pat.3847

  86. Vimbela GV, Ngo SM, Fraze C, Yang L, David A Stout DA (2017) Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 12:3941–3965. https://doi.org/10.2147/ijn.s134526

  87. Vivekanandhan S, Christensen L, Misra M, Kumar Mohanty A (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol. https://doi.org/10.4236/jbnb.2012.33035

  88. Wang X, Du Y, Luo J, et al (2009) A novel biopolymer/rectorite nanocomposite with antimicrobial activity. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2009.01.015

  89. Wu CS (2009) Antibacterial and static dissipating composites of poly(butylene adipate-co-terephthalate) and multi-walled carbon nanotubes. Carbon N Y 47:3091–3098. https://doi.org/10.1016/j.carbon.2009.07.023

    Article  CAS  Google Scholar 

  90. Wu D, Cheng Y, Feng S, et al (2013) Crystallization behavior of polylactide/graphene composites crystallization behavior of polylactide/graphene composites. https://doi.org/10.1021/ie4004199

  91. Yan X, Li F, Di Hu K et al (2017) Nacre-mimic reinforced Ag@reduced graphene oxide-sodium alginate composite film for wound healing. Sci Rep. https://doi.org/10.1038/s41598-017-14191-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. C. Mokhena or A. Mtibe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokhena, T.C., Mochane, M.J., Mokhothu, T.H., Mtibe, A., Tshifularo, C.A., Motsoeneng, T.S. (2019). Preparation and Characterization of Antibacterial Sustainable Nanocomposites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_7

Download citation

Publish with us

Policies and ethics