Skip to main content

Mechanical, Thermal and Viscoelastic Properties of Polymer Composites Reinforced with Various Nanomaterials

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

In recent years, nanomaterials played a key role in developing novel polymer nanocomposites with multifunctional properties. Nanomaterials that will be reviewed in this study are nanoclays, carbonaceous (carbon nanotubes and graphene) and nanocellulose. This chapter reviews the effects of nanomaterials and nanomaterials hybrid on mechanical, thermal, rheological and dynamic mechanical properties of polymer nanocomposites. In the last decades, biobased and biodegradable polymers (biopolymers) reinforced with nanomaterials have been a research hotspot. However, this chapter also reviews the recent developments of polymer nanocomposites from biopolymers and nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdellaoui H, Bensalah H, Raji M, Rodrigue D, Bouhfid R, Qaiss AK (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14:379–389. https://doi.org/10.1016/S1672-6529(16)60406-7

    Article  Google Scholar 

  2. Abdollahi R, Taghizadeh MT, Savani S (2018) Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly (acrylic acid) grafted onto amylose. Polym Degrad Stab 147:151–158. https://doi.org/10.1016/j.polymdegradstab.2017.11.022

    Article  CAS  Google Scholar 

  3. Ahmad EEM, Luyt AS, Djoković V (2013) Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polym Bull 70:1265–1276. https://doi.org/10.1007/s00289-012-0847-2

    Article  CAS  Google Scholar 

  4. Al-saleh MH (2015) Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. JMADE 85:76–81. https://doi.org/10.1016/j.matdes.2015.06.162

    Article  CAS  Google Scholar 

  5. Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2013) Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. J Food Eng 117:26–33. https://doi.org/10.1016/j.jfoodeng.2013.01.042

    Article  CAS  Google Scholar 

  6. Alcântara ACS, Darder M, Aranda P, Ruiz-hitzky E (2014) Polysaccharide–fibrous clay bionanocomposites. Appl Clay Sci 96:2–8. https://doi.org/10.1016/j.clay.2014.02.018

    Article  CAS  Google Scholar 

  7. Ali FB, Mohan R (2010) Thermal, mechanical, and rheological properties of biodegradable polybutylene succinate/carbon nanotubes nanocomposites. 1–6. https://doi.org/10.1002/pc.20913

  8. An JE, Jeon GW, Jeong YG (2012) Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene. Fibers Polym 13:507–514. https://doi.org/10.1007/s12221-012-0507-z

    Article  CAS  Google Scholar 

  9. Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381. https://doi.org/10.1016/j.matdes.2013.03.033

    Article  CAS  Google Scholar 

  10. Azevedo VM, Silva EK, Pereira CFG, Costa JMG, Borges SV (2015) Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocoll 43:252–258. https://doi.org/10.1016/j.foodhyd.2014.05.027

    Article  CAS  Google Scholar 

  11. Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/ poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439. https://doi.org/10.1016/j.carbpol.2014.04.024

    Article  CAS  Google Scholar 

  12. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    Article  CAS  Google Scholar 

  13. Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 132:1–8. https://doi.org/10.1016/j.carbpol.2015.06.043

    Article  CAS  Google Scholar 

  14. Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321. https://doi.org/10.1080/00986445.2013.841149

    Article  CAS  Google Scholar 

  15. Baniasadi H, Ramazani A, Javan Nikkhah S (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Des 31:76–84. https://doi.org/10.1016/j.matdes.2009.07.014

    Article  CAS  Google Scholar 

  16. Běhálek L, Maršálková M, Lenfeld P, et al (2013) Study of crystallization of polylactic acid composites and nanocomposites with natural fibres by DSC method. 1–6

    Google Scholar 

  17. Botlhoko OJ, Ramontja J, Ray SS (2017) Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly (E-caprolactone) blend composites. 45373:1–14. https://doi.org/10.1002/app.45373

  18. Botlhoko JO, Ramontja J, Sinha S (2018) Morphological development and enhancement of thermal, mechanical, and electronic properties of thermally exfoliated graphene oxide- fi lled biodegradable polylactide/poly (ε-caprolactone) blend composites. Polymer (Guildf) 139:188–200. https://doi.org/10.1016/j.polymer.2018.02.005

    Article  CAS  Google Scholar 

  19. Cao X, Xu C, Wang Y, Liu Y, Liu Y, Chen Y (2013) New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym Test 32:819–826. https://doi.org/10.1016/j.polymertesting.2013.04.005

    Article  CAS  Google Scholar 

  20. Cha J, Jin S, Hun J, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/ epoxy nanocomposites. JMADE 95:1–8. https://doi.org/10.1016/j.matdes.2016.01.077

    Article  CAS  Google Scholar 

  21. Cheewawuttipong W, Fuoka D, Tanoue S, Uematsu H, Lemoto Y (2013) Thermal and mechanical properties of polypropylene/boron nitride composites. Energy Proc 34:808–817. https://doi.org/10.1016/j.egypro.2013.06.817

    Article  CAS  Google Scholar 

  22. Chen PY, Lian HY, Shih YF, Chen-Wei SM, Jeng RJ (2017) Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater Chem Phys 196:249–255. https://doi.org/10.1016/j.matchemphys.2017.05.006

    Article  CAS  Google Scholar 

  23. Chen RS, Ahmad S (2017) Mechanical performance and fl ame retardancy of rice husk/ organoclay-reinforced blend of recycled plastics. Mater Chem Phys 198:57–65. https://doi.org/10.1016/j.matchemphys.2017.05.054

    Article  CAS  Google Scholar 

  24. Chen RY, Zou W, Zhang HC, Zhang GZ, Yang ZT, Jin G, Qu JP (2015) Thermal behavior, dynamic mechanical properties and rheological properties of poly(butylene succinate) composites filled with nanometer calcium carbonate. Polym Test 42:160–167. https://doi.org/10.1016/j.polymertesting.2015.01.015

    Article  CAS  Google Scholar 

  25. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615. https://doi.org/10.1016/j.carbpol.2008.11.030

    Article  CAS  Google Scholar 

  26. Cheng J, Zheng P, Zhao F, Ma X (2013) The composites based on plasticized starch and carbon nanotubes. Int J Biol Macromol 59:13–19. https://doi.org/10.1016/j.ijbiomac.2013.04.010

    Article  CAS  Google Scholar 

  27. Chiu F (2016) Fabrication and characterization of biodegradable poly (butylene succinate-co-adipate) nanocomposites with halloysite nanotube and organo-montmorillonite as nano fi llers. Polym Test 54:1–11. https://doi.org/10.1016/j.polymertesting.2016.06.018

    Article  CAS  Google Scholar 

  28. Chiu F (2017) Halloysite nanotube- and organoclay- fi lled biodegradable poly (butylene succinate-co-adipate)/ maleated polyethylene blend- based nanocomposites with enhanced rigidity. Compos Part B 110:193–203. https://doi.org/10.1016/j.compositesb.2016.10.091

    Article  CAS  Google Scholar 

  29. Chiu FC, Chu PH (2006) Characterization of solution-mixed polypropylene/clay nanocomposites without compatibilizers. J Polym Res 13:73–78. https://doi.org/10.1007/s10965-005-9009-7

    Article  CAS  Google Scholar 

  30. Daitx TS, Carli LN, Crespo JS, Mauler RS (2015) Effects of the organic modi fi cation of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci 115:157–164. https://doi.org/10.1016/j.clay.2015.07.038

    Article  CAS  Google Scholar 

  31. Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495. https://doi.org/10.1016/j.carbpol.2011.11.015

    Article  CAS  Google Scholar 

  32. El-hadi AM (2017) Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Nat Publ Gr 1–14. https://doi.org/10.1038/srep46767

  33. Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss AK (2016) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43. https://doi.org/10.1016/j.mechmat.2016.04.008

    Article  Google Scholar 

  34. Farahnaky A, Dadfar SMM, Shahbazi M (2014) Physical and mechanical properties of gelatin–clay nanocomposite. J Food Eng 122:78–83. https://doi.org/10.1016/j.jfoodeng.2013.06.016

    Article  CAS  Google Scholar 

  35. Ferreira FV, Francisco W, Menezes BRC, Brito FS, Coutinho AS, Cividanes LS, Coutinho AR, Thim GP (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929. https://doi.org/10.1016/j.apsusc.2016.07.164

    Article  CAS  Google Scholar 

  36. Floros M, Hojabri L, Abraham E, Jose J, Thomas S, Pothan L, Leao AL, Marine S (2012) Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers. Polym Degrad Stab 97:1970–1978. https://doi.org/10.1016/j.polymdegradstab.2012.02.016

    Article  CAS  Google Scholar 

  37. Fukushima K, Tabuani D, Camino G (2012) Poly (lactic acid)/clay nanocomposites: effect of nature and content of clay on morphology, thermal and thermo-mechanical properties. Mater Sci Eng, C 32:1790–1795. https://doi.org/10.1016/j.msec.2012.04.047

    Article  CAS  Google Scholar 

  38. Gao T, Li Y, Bao R, Liu ZY, Xie BH, Yang MB, Yang W (2017) Tailoring co-continuous like morphology in blends with highly asymmetric composition by MWCNTs: towards biodegradable high-performance electrical conductive poly (l-lactide) poly (3-hydroxybutyrate- co-4-hydroxybutyrate) blends. Compos Sci Technol 152:111–119. https://doi.org/10.1016/j.compscitech.2017.09.014

    Article  CAS  Google Scholar 

  39. Giannakas A, Grigoriadi K, Leontiou A, Barkoula NM, Lavados A (2014) Preparation, characterization, mechanical and barrier properties investigation of chitosan—clay nanocomposites. Carbohydr Polym 108:103–111. https://doi.org/10.1016/j.carbpol.2014.03.019

    Article  CAS  Google Scholar 

  40. Giannakas A, Vlacha M, Salmas C, Leontiou A, Katapodis P, Stamatis H, Barkoula NM, Ladavos A (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415. https://doi.org/10.1016/j.carbpol.2015.12.072

    Article  CAS  Google Scholar 

  41. Gumede TP, Luyt AS, Hassan MK, Pérez-Camargo RA, Tercjak A, Müller AJ (2017) Morphology, nucleation, and isothermal crystallization kinetics of poly(ε-caprolactone) mixed with a polycarbonate/MWCNTs masterbatch. Polymers https://doi.org/10.3390/polym9120709

  42. Gumede TP, Luyt AS, Pèrez-Camargo RA, Müller AJ (2017) The influence of paraffin wax addition on the isothermal crystallization of LLDPE. J App Poly Sci 44398:1–7. https://doi.org/10.1002/app.44398

  43. Guo Y, Yang K, Zuo X et al (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of Poly (lactic acid) nanocomposites. Polymer (Guildf) 83:246–259. https://doi.org/10.1016/j.polymer.2015.12.012

    Article  CAS  Google Scholar 

  44. Il HS, Im SS, Kim DK (2003) Dynamic mechanical and melt rheological properties of sulfonated poly(butylene succinate) ionomers. Polymer (Guildf) 44:7165–7173. https://doi.org/10.1016/S0032-3861(03)00673-6

    Article  CAS  Google Scholar 

  45. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956. https://doi.org/10.1016/j.eurpolymj.2012.10.016

    Article  CAS  Google Scholar 

  46. Huang J, Zhang S, Zhang F, Guo Z, Jin L, Pan Y, Wang Y, Guo T (2017) Enhancement of lignocellulose-carbon nanotubes composites by lignocellulose grafting. Carbohydr Polym 160:115–122. https://doi.org/10.1016/j.carbpol.2016.12.053

    Article  CAS  Google Scholar 

  47. John MJ, Anandjiwala R, Oksman K, Mathew AP (2013) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci 127:274–281. https://doi.org/10.1002/app.37884

    Article  CAS  Google Scholar 

  48. Jonoobi M, Aitomäki Y, Mathew AP, Oksman K (2014) Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos Part A Appl Sci Manuf 58:30–35. https://doi.org/10.1016/j.compositesa.2013.11.010

    Article  CAS  Google Scholar 

  49. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747. https://doi.org/10.1016/j.compscitech.2010.07.005

    Article  CAS  Google Scholar 

  50. Jyoti J, Basu S, Pratap B, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos Part B 83:58–65. https://doi.org/10.1016/j.compositesb.2015.08.055

    Article  CAS  Google Scholar 

  51. Kanmani P, Rhim J (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652. https://doi.org/10.1016/j.foodhyd.2013.08.011

    Article  CAS  Google Scholar 

  52. Khan AS, Hussain AN, Sidra L, Sarfraz Z, Khalid H, Khan M, Manzoor F, Shahzadi L, Yar M, Rehman IU (2017) Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fi bers for biomedical/dental application. Mater Sci Eng, C 80:387–396. https://doi.org/10.1016/j.msec.2017.05.109

    Article  CAS  Google Scholar 

  53. Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. https://doi.org/10.1021/am500577e

  54. Khumalo VM, Karger-Kocsis J, Thomann R (2010) Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. eXPPRES Poly Lett 4: 264–274. https://doi.org/10.3144/expresspolymlett.2010.34

  55. Krainoi A, Kummerlöwe C, Nakaramontri Y, Vennemann N, Pichaiyut S, Wisunthorn S, Nakason C (2018) Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym Test 66:122–136. https://doi.org/10.1016/j.polymertesting.2018.01.003

    Article  CAS  Google Scholar 

  56. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test 31:31–38. https://doi.org/10.1016/j.polymertesting.2011.09.007

    Article  CAS  Google Scholar 

  57. Lai S, Wu S, Lin G, Don T (2014) Unusual mechanical properties of melt-blended poly (lactic acid) (PLA)/clay nanocomposites. Eur Polym J 52:193–206. https://doi.org/10.1016/j.eurpolymj.2013.12.012

    Article  CAS  Google Scholar 

  58. Lekha P, Mtibe A, Motaung T., Andrew JE, Sithole BB, Gibril M (2016) Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps. Maderas Cienc y Tecnol 18:0–0. https://doi.org/10.4067/s0718-221x2016005000041

  59. Lendvai L, Apostolov A, Karger-kocsis J (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly (butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572. https://doi.org/10.1016/j.carbpol.2017.05.100

    Article  CAS  Google Scholar 

  60. Liao CZ, Li K, Wong HM, Tong WY, Yeung KWK, Tjong SC (2013) Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater Sci Eng, C 33(3):1380–1388

    Google Scholar 

  61. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q (2011) Colloids and surfaces B: biointerfaces Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering. Colloids Surfs B Biointerfaces 83:367–375. https://doi.org/10.1016/j.colsurfb.2010.12.011

    Article  CAS  Google Scholar 

  62. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692. https://doi.org/10.1016/j.biortech.2010.02.045

    Article  CAS  Google Scholar 

  63. Lopez-manchado MA, Brasero J, Avil F (2016) Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Compos Part B: Eng 87:350–356. https://doi.org/10.1016/j.compositesb.2015.08.079

    Article  CAS  Google Scholar 

  64. Majeed K, Al M, Almaadeed A, Zagho MM (2018) Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films. Chinese J Chem Eng 26:428–435. https://doi.org/10.1016/j.cjche.2017.09.017

    Article  Google Scholar 

  65. Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673. https://doi.org/10.1016/j.matdes.2013.10.038

    Article  CAS  Google Scholar 

  66. Malkappa K, Rao BN, Jana T (2016) Functionalized polybutadiene diol based hydrophobic, water dispersible polyurethane nanocomposites: role of organo-clay structure. Polymer (Guildf) 99:404–416. https://doi.org/10.1016/j.polymer.2016.07.039

    Article  CAS  Google Scholar 

  67. Mandal A, Chakrabarty D (2014) Journal of industrial and engineering chemistry studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473. https://doi.org/10.1016/j.jiec.2013.05.003

    Article  CAS  Google Scholar 

  68. Mangeon C, Mahouche-Chergui S, Versace DL, Guerrouache M, Carbonnier B, Langlois V, Renard E (2015) Reactive & functional polymers poly (3-hydroxyalkanoate)-grafted carbon nanotube nanofillers as reinforcing agent for PHAs-based electrospun mats. React Funct Polym 89:18–23. https://doi.org/10.1016/j.reactfunctpolym.2015.03.001

    Article  CAS  Google Scholar 

  69. Mashhadzadeh AH, Fereidoon A, Ahangari MG (2017) Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: experimental and density functional theory study. Appl Surf Sci 420:167–179. https://doi.org/10.1016/j.apsusc.2017.05.148

    Article  CAS  Google Scholar 

  70. Mochane MJ (2014) Thermal and mechanical properties of polyolefins/Wax Pcm blends prepared with and without expanded graphite

    Google Scholar 

  71. Mochane MJ, Luyt AS (2015) The Effect of expanded graphite on the thermal stability, latent heat, and flammability properties of EVA/Wax phase change blends. Polym Eng Sci https://doi.org/10.1002/pen

  72. Mofokeng TG, Ray SS, Ojijo V (2018a) Structure—property relationship in PP/LDPE blend composites : The role of nanoclay localization. 46193:1–12. https://doi.org/10.1002/app.46193

  73. Mofokeng TG, Ray SS, Ojijo V (2018b) Influence of selectively localised nanoclay particles on non-isothermal crystallisation and degradation behaviour of PP/LDPE blend composites. https://doi.org/10.3390/polym10030245

  74. Moradi M, Mohandesi JA, Haghshenas DF (2015) Mechanical properties of the poly (vinyl alcohol) based nanocomposites at low content of surfactant wrapped graphene sheets. Polymer (Guildf) 60:207–214. https://doi.org/10.1016/j.polymer.2015.01.044

    Article  CAS  Google Scholar 

  75. Motaung TE, Mtibe A (2015) Alkali treatment and cellulose nanowhiskers extracted from maize stalk residues. Mater Sci App 6:1022–1032. https://doi.org/10.4236/msa.2015.611102

    Article  CAS  Google Scholar 

  76. Moustafa H, Galliard H, Vidal L, Dufresne A (2017) Facile modification of organoclay and its effect on the compatibility and properties of novel biodegradable PBE/PBAT nanocomposites. Eur Polym J 87:188–199. https://doi.org/10.1016/j.eurpolymj.2016.12.009

    Article  CAS  Google Scholar 

  77. Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015a) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8. https://doi.org/10.1016/j.carbpol.2014.10.007

  78. Mtibe A, Mandlevu Y, Linganiso LZ, Anandjiwala RD (2015b) Extraction of cellulose nanowhiskers from flax fibres and their reinforcing effect on poly (furfuryl) alcohol. 9:1–9. https://doi.org/10.1166/jbmb.2015.1531

  79. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900. https://doi.org/10.1016/j.polymdegradstab.2009.12.019

    Article  CAS  Google Scholar 

  80. Nikkhah SJ, Ramazani A, Baniasadi H, Tavakolzadeh F (2009) Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler-Natta catalyst. Mater Des 30:2309–2315. https://doi.org/10.1016/j.matdes.2008.11.019

    Article  CAS  Google Scholar 

  81. Ortiz AV, Teixeira JG, Gomes MG, Oliveira RR, Díaz FRV, Moura EAB (2014) Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay. Appl Surf Sci 310:331–335. https://doi.org/10.1016/j.apsusc.2014.03.075

    Article  CAS  Google Scholar 

  82. Pedrazzoli D, Ceccato R, Karger-Kocsis J, Pegoretti A (2013) Viscoelastic behaviour and fracture toughness of linear-low-density polyethylene reinforced with synthetic boehmite alumina nanoparticles. Express Polym Lett 7:652–666. https://doi.org/10.3144/expresspolymlett.2013.62

    Article  CAS  Google Scholar 

  83. Pedrazzoli D, Pegoretti A (2014) Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites. Compos Part A Appl Sci Manuf 66:25–34. https://doi.org/10.1016/j.compositesa.2014.06.016

    Article  CAS  Google Scholar 

  84. Phua YJ, Lau NS, Sudesh K, Chow WS, Ishak ZAM (2012) Biodegradability studies of poly (butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354. https://doi.org/10.1016/j.polymdegradstab.2012.05.024

    Article  CAS  Google Scholar 

  85. Ranjan N, Roy I, Sarkar G, Bhattacharyya A, Das R, Rana D, Banerjee R, Paul AK, Mishra R, Chattopadhyay D (2018) Development of active packaging material based on cellulose acetate butyrate/polyethylene glycol/aryl ammonium cation modi fi ed clay. Carbohydr Polym 187:8–18. https://doi.org/10.1016/j.carbpol.2018.01.065

  86. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006

    Article  CAS  Google Scholar 

  87. Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225. https://doi.org/10.1016/j.ijhydene.2017.04.044

    Article  CAS  Google Scholar 

  88. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861. https://doi.org/10.1016/j.progpolymsci.2014.01.003

    Article  CAS  Google Scholar 

  89. Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041. https://doi.org/10.1016/j.ijhydene.2013.08.062

    Article  CAS  Google Scholar 

  90. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems. J Memb Sci 379:224–232. https://doi.org/10.1016/j.memsci.2011.05.070

    Article  CAS  Google Scholar 

  91. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41. https://doi.org/10.1016/j.pecs.2017.11.002

    Article  Google Scholar 

  92. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017b) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells

    Google Scholar 

  93. Rezakazemi M, Shahidi K, Mohammadi T (2012a) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284. https://doi.org/10.1016/j.ijhydene.2012.08.109

  94. Rezakazemi M, Shahidi K, Mohammadi T (2012b) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589. https://doi.org/10.1016/j.ijhydene.2012.06.104

  95. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470. https://doi.org/10.1039/c5ra13609a

    Article  CAS  Google Scholar 

  96. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18. https://doi.org/10.1016/j.jngse.2016.01.033

    Article  CAS  Google Scholar 

  97. Sanchez-garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol 70:1095–1105. https://doi.org/10.1016/j.compscitech.2010.02.015

    Article  CAS  Google Scholar 

  98. Sefadi JS, Luyt AS, Pionteck J, Gohs U (2015) Effect of surfactant and radiation treatment on the morphology and properties of PP/EG composites. J Mater Sci 50:6021–6031. https://doi.org/10.1007/s10853-015-9149-z

    Article  CAS  Google Scholar 

  99. Shafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723. https://doi.org/10.1002/app.34633

    Article  CAS  Google Scholar 

  100. Shah KJ, Shukla AD, Shah DO, Imae T (2016) Effect of organic modi fi ers on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polymer (Guildf) 97:525–532. https://doi.org/10.1016/j.polymer.2016.05.066

    Article  CAS  Google Scholar 

  101. Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493. https://doi.org/10.1002/pen.23406

    Article  CAS  Google Scholar 

  102. Shi Q, Zhou C, Yue Y, Guo W, Wu Y, Wu Q (2012) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr Polym 90:301–308. https://doi.org/10.1016/j.carbpol.2012.05.042

    Article  CAS  Google Scholar 

  103. Sibeko MA, Luyt AS (2013) Preparation and characterization of vinylsilane crosslinked high-density polyethylene compositesfilled with nanoclays. Polym Compos 34:1720–1727. https://doi.org/10.1002/pc.22575

    Article  CAS  Google Scholar 

  104. Silva BL, Nack FC, Lepienski CM, Coelho LAF, Becker D (2014) Influence of intercalation methods in properties of clay and carbon nanotube and high density polyethylene nanocomposites. Mater Res 17:1628–1636. https://doi.org/10.1590/1516-1439.303714

    Article  Google Scholar 

  105. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer (Guildf) 52:4001–4010. https://doi.org/10.1016/j.polymer.2011.06.045

    Article  CAS  Google Scholar 

  106. Song X, Zhou S, Wang Y, Kang W, Cheng B (2012) Mechanical properties and crystallization behavior of polypropylene non-woven fabrics reinforced with POSS and SiO2 nanoparticles. 13:1015–1022. https://doi.org/10.1007/s12221-012-1015-x

  107. Sullivan EM, Moon RJ, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Mater 2015:8106–8116. https://doi.org/10.3390/ma8125447

    Article  CAS  Google Scholar 

  108. Tan L, Chen Y, Zhou W, Ye S, Wei J (2011) Novel approach toward poly(butylene succinate)/single-walled carbon nanotubes nanocomposites with interfacial-induced crystallization behaviors and mechanical strength. Polymer 52:3587–3596. https://doi.org/10.1016/j.polymer.2011.06.006

    Article  CAS  Google Scholar 

  109. Tarfaoui M, Lafdi K, El MA (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos Part B 103:113–121. https://doi.org/10.1016/j.compositesb.2016.08.016

    Article  CAS  Google Scholar 

  110. Valapa RB, Pugazhenthi G, Katiyar V (2015) Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Adv 5:28410–28423. https://doi.org/10.1039/C4RA15669B

    Article  CAS  Google Scholar 

  111. Wan Y, Gong L, Tang L, Wu LB, Jiang JX (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos PART A 64:79–89. https://doi.org/10.1016/j.compositesa.2014.04.023

    Article  CAS  Google Scholar 

  112. Wang L, Qiu J, Sakai E, Wei X (2016) The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Compos Part A 89:18–25. https://doi.org/10.1016/j.compositesa.2015.12.016

    Article  CAS  Google Scholar 

  113. Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer (Guildf) 54:6589–6598. https://doi.org/10.1016/j.polymer.2013.10.011

    Article  CAS  Google Scholar 

  114. Yang ZY, Wang WJ, Shao ZQ, Zhu HD, Li YH, Wang FJ (2013) The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20:159–168. https://doi.org/10.1007/s10570-012-9796-z

    Article  CAS  Google Scholar 

  115. Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer (Guildf) 45:8211–8219. https://doi.org/10.1016/j.polymer.2004.09.054

    Article  CAS  Google Scholar 

  116. Younesi H, Farsi M, Rezazadeh Z (2013) Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Compos Part B 44:750–755. https://doi.org/10.1016/j.compositesb.2012.04.023

    Article  CAS  Google Scholar 

  117. Zahedi Y, Fathi-achachlouei B, Yousefi AR (2017) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.10.185

  118. Zhan J, Chen Y, Tang G, Pan H, Zhang Q, Song L, Hu Y (2014) Crystallization and melting properties of poly (butylene succinate) composites with titanium dioxide nanotubes or hydroxyapatite nanorods. J App Poly Sci 40335:1–10. https://doi.org/10.1002/app.40335

    Article  CAS  Google Scholar 

  119. Zhang X, Zhang Y (2015) Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. Carbohydr Polym 134:52–59. https://doi.org/10.1016/j.carbpol.2015.07.078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Mtibe or T. C. Mokhena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokhothu, T.H. et al. (2019). Mechanical, Thermal and Viscoelastic Properties of Polymer Composites Reinforced with Various Nanomaterials. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_6

Download citation

Publish with us

Policies and ethics