Skip to main content

Eco-friendly Polymer Composite: State-of-Arts, Opportunities and Challenge

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

This work explores the prospect, challenges and opportunities in an exciting breed of the polymer composite. Though the applications of polymers matrix composites are widespread and still ever increasing, one of the concerns in developing polymer matrix composites is the overall environmental impact. Technological innovation has led to the development of state of the art methods for fabricating, optimizing and characterizing these class of materials leading to new materials that are degradable but still possess excellent properties. In this work, the effect of using renewable and biodegradable reinforcement as a replacement for synthetic fillers is discussed. Also, the opportunities and challenges faced in producing these environmental friendly composites are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FEATURE: UN’s mission to keep plastics out of oceans and marine life. https://news.un.org/en/story/2017/04/556132-feature-uns-mission-keep-plastics-out-oceans-and-marine-life. Accessed on January 10, 2018.

References

  1. Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Defence Sci J 64(3):244–261

    Article  CAS  Google Scholar 

  2. Layth M, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 1–15. http://dx.doi.org/10.1155/2015/243947

  3. Swaroop KV, Vinod NR, Rupendra M (2017) Numerical and experimental analysis of a natural fiber reinforced composites. Int J Mech Prod Eng 5(11):25–27

    Google Scholar 

  4. Anne B (2011) Environmental-friendly biodegradable polymers and composites. In: Integrated waste management, vol I. http://www.intechopen.com/books/integrated-wastemanagement-volume-i

  5. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  6. Material resources, productivity and the environment: key findings. www.oecd.org. Accessed 5 Feb 2018

  7. Islam MS, AhmadMB Hasan M, Aziz SA, Jawaid M, Haafiz MKM, Zakaria SAH (2015) Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical and biodegradable properties in hybrid nanocomposite. BioResources 10(1):1394–1407

    Article  Google Scholar 

  8. Rahmat MB, Ab-Wahid WF, Ahmad M (2015) Effect of nanoclay on tensile strength of wood plastic composite made from malaysian rice husk and polypropylene. Int J Mech Prod Eng 3(10):61–63

    Google Scholar 

  9. Rana S, Fangueiro R (eds) (2016) Fibrous and textile materials for composite applications. Springer, Berlin

    Google Scholar 

  10. Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(4):385–416

    Google Scholar 

  11. Asokan P, Firdoous M, Sonal W (2012) Properties and potential of bio-fibres, bio-binders, and bio-composites. Rev Adv Mater Sci 30:254–261

    CAS  Google Scholar 

  12. Abilash N, Sivapragash M (2013) Environmental benefits of ecofriendly natural fiber reinforced polymeric composite materials. Int J Appl Innov Eng Manage 2(1):53–59

    Google Scholar 

  13. Vroman I, Tighzert L (2009) Biodegradable polymers. Mater 2:307–344. https://doi.org/10.3390/ma2020307

  14. El-Sherbiny IM, Ali IH (2015) Eco-friendly electrospun polymeric nanofibers-based nanocomposites for wound healing and tissue engineering. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites processing and properties. Springer, New Delhi, pp 399–431

    Google Scholar 

  15. Chen HN (2012) An overview of degradable polymers. https://doi.org/10.1021/bk-2012-1114.pr002

  16. Khoo RZ, Ismail H, Chow WS (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chem 19:788–794. https://doi.org/10.1016/j.proche.2016.03.086

    Article  CAS  Google Scholar 

  17. Kocak D, Merdan N, Yuksek M, Sancak E (2013) Effects of chemical modification on mechanical properties of Luffa cylindrica. Asian J Chem 25(2):637–641

    Article  CAS  Google Scholar 

  18. Mohanta N, Acharya SK (2013) Tensile. Flexural and interlaminar shear properties of luffa cylindrical fibre reinforced epoxy composites. Int J Macromol Sci 3(2):6–10

    Google Scholar 

  19. Pai AR, Jatap RN (2015) Surface morphology and mechanical properties of some unique natural fiber reinforced polymer composites—a review. J Mater Environ Sci 6(4):907–917

    Google Scholar 

  20. Panneerdhass R, Baskan R, Rajkumar K, Gnanavebabu A (2014) Mechanical properties of chopped randomly oriented epoxy—luffa fiber reinforced polymer composite. Appl Mech Mater 591:103–107

    Article  Google Scholar 

  21. Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fibers. IOP conference series: materials science and engineering. https://doi.org/10.1088/1757-899x/149/1/012091

  22. Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos B 43:2230–2236

    Article  CAS  Google Scholar 

  23. Chen RS, AhmadS, Gan S (2016) Characterization of rice husk incorporated recycled thermoplastic blend composites. Bioresources 11(4):8470–8482

    Google Scholar 

  24. Safwan MM, Lin HO, Akil HM (2013) Preparation and characterization of palm kernel shell/polypropylene biocomposite and their hybrid composite with Nanosilica. BioResources 8(2):1539–1550

    Google Scholar 

  25. Karthik R, Sathiyamurthy S, Jayabal S, Chidambaram K (2014) Tribological behaviour of rice husk and egg shell hybrid particulated coir-polyester composites. IOSR J Mech Civil Eng 75–80. Retrieved from http://www.iosrjournals.org/iosr-jmce/papers/NCCAMABS/Volume-3/39.pdf

  26. Prabhu R, Amin AK, Dhyanchandra A (2015) Development and characterization of low cost polymer composites from coconut coir. Am J Mater Sci 5(3C):62–68

    Google Scholar 

  27. Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manage 30:680–684

    Google Scholar 

  28. Ravindran D, Sornakumar T, Prithvirajadurai DS, Varadharajan V (2015) Development of hybrid coconut shell powderwood dust polyester resin based composites. Int J Appl Mech Prod Eng 1(7):1–4

    Google Scholar 

  29. Zaini ASSM, Rus ZAM, Rahman NA, Jais FHM, Fauzan MZ, Sufian NA (2017) Mechanical properties evaluation of extruded wood polymer composites. In: 4th international conference on the advancement of materials and nanotechnology (ICAMN IV 2016), AIP conference proceedings 1877, 060005. pp 2–9. https://doi.org/10.1063/1.4999884

  30. Aigbodion VS, Hassan SB, Agunsoye OJ (2011) Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Mater Des 33:322–327

    Google Scholar 

  31. Atuanya CU, Aigbodion VS, Nwigbo SC (2014) Experimental study of the thermal and wear properties of recycled polyethylene/breadfruit seed hull ash particulate composites. Mater Des 53:65–73

    Google Scholar 

  32. Fragassa C, Santulli C, Pavlović A, ŠljivićM (2015) Improving performance and applicability of green composite materials by hybridization. Contemp Mater 35–43. https://doi.org/10.7251/comen1501035f

  33. Muthukumar S, Lingadurai K (2014) Investigating the mechanical behaviour of coconut shell and groundnut shell reinforced polymer composite. Glob J Eng Sci Res 1(3):19–23

    Google Scholar 

  34. Kasiviswanathan S, Santhanam K, Kumaravel A (2015) Evaluation of mechanical properties of natural hybrid fibers, reinforced polyestercomposite materials. Carbon Sci Tech 7/4:43–49 [CST-161-7-4]

    Google Scholar 

  35. Udhayasankar R, Karthikeyan B (2015) A review on coconut shell reinforced composites. Int J ChemTech Res CODEN (USA): IJCRGG 8(11):624–637

    Google Scholar 

  36. Karippa JJ, Murthy HNN, Rai KS, Sreejith M, Krishna M (2011) Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. J Compos Mater 1–7

    Google Scholar 

  37. Meziane O, Bensedira A, Guessoum M, Haddaoui N (2016) Polypropylene-modified kaolinite composites: effect of chemical modification on mechanical, thermal and morphological properties. J Fundam Appl Sci 8(2):494–509

    Article  CAS  Google Scholar 

  38. Nourbakhsh A, Baghlani FF, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Ind Crops Prod 33:183–187

    Article  CAS  Google Scholar 

  39. Chauhan S, Bhushan RK (2017) Study of polymer matrix composite with natural particulate/fiber in PMC: a review. Int J Adv Res Ideas Innovations Technol 3(3):1168–1179

    Google Scholar 

  40. Arpitha GR, Sanjay MR, Yogesha B (2014) Review on comparative evaluation of fiber reinforced polymer matrix composites. Adv Eng Appl Sci Int J 4(4):44–47

    Google Scholar 

  41. Chandramohan D, Marimuthu K (2011) A review on natural fibers. IJRRAS 8(2):194–206

    Google Scholar 

  42. Hashim MY, Roslan MN, Amin AM, Zaidi AMA, Ariffin S (2012) Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: a brief review. World Acad Sci Eng Technol 6:1382–1388

    Google Scholar 

  43. Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846

    Article  CAS  Google Scholar 

  44. Rozyanty AR, Firdaus MYN, Liew TZ, Yunus NFM (2015) Kenaf-unsaturated polyester composite: the effect of different retting process of kenaf bast fiber on the mechanical properties. Mater Sci Forum 819:256–261

    Google Scholar 

  45. Dass PM, Akinterinwa A, Adamu JN, Abba S (2015) The influence of different retting processes on the strength of fibres obtained from Poliostigma raticulatum, Grewia mollis, Cissus populnea and Hibiscus sabdariffa. Environ Nat Resour Res 5(4):41–45

    Google Scholar 

  46. Gopu RN, Singh A, Zimniewska M, Raghavan V (2013) Comparative evaluation of physical and structural properties of water retted and non-retted flax fibers. Fibers 1:59–69. https://doi.org/10.3390/fib1030059

    Article  CAS  Google Scholar 

  47. Jawaid M, Tahir PM, Saba N (eds) (2017) Lignocellulosic fibre and biomass-based composite materials: processing, properties and applications. Woodhead Publishing, UK

    Google Scholar 

  48. Thakur VK, Thakur MK (eds) (2015) Eco-friendly polymer nanocomposites: chemistry and application. Springer, New Delhi

    Google Scholar 

  49. Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596

    Article  Google Scholar 

  50. Ray SS (2013) Environmentally friendly polymer nanocomposites: types, processing and properties. Woodhead Publishing, New Delhi

    Book  Google Scholar 

  51. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 1–13. http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043

  52. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273. https://doi.org/10.3390/polym6082247

  53. Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin

    Google Scholar 

  54. Shehu U, Audu H, Nwamara MA, Ade-Ajayi AF, Shittu UM, Isa MT (2014) Natural fibre as reinforcement for polymers: a review. SPJTS 2(1):238–253

    Google Scholar 

  55. Kabir MM, Wang H, Aravinthan T, Cardona F, Lau KT (2011) Effects of natural fibre surface on composite properties: a review. pp 94–99

    Google Scholar 

  56. Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 1–36. https://doi.org/10.1155/2011/837875

  57. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform—materials analysis. ISBN 978-953-51-0594-7. www.interchopen.com/books/fourier-transform–materials-analysis/Fourier-Transform-Infrared-Spectroscopy-for-natural-fibres. Accessed 5 Feb 2018

  58. Kumar R, Obrai S, Sharma A (2011) Chemical modifications of natural fiber for composite material. Der Chemica Sinica 2(4):219–228

    CAS  Google Scholar 

  59. Anurag T (2016) Study of musa acuminata fibre reinforced composite—a review. Int J Res Aeronaut Mech Eng 4(4):29–42

    Google Scholar 

  60. Srinivasan R (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng 1–17. https://doi.org/10.1155/2011/872531

  61. Hamid E, Raji M, Bouhfid R, Qaiss AEK (2016) Nanoclay and natural fibers based hybrid composites: mechanical, morphological, thermal and rheological properties. In: Jawaid M, Qaiss AEK, Bouhfid R (eds) Nanoclay reinforced polymer composites, engineering materials. Springer, Singapore

    Google Scholar 

  62. Mallick PK (2018) Processing of polymermatrix composites. CRC Press, Boca Raton

    Google Scholar 

  63. Zin MH, Razzi MF, Othman SLK, Abdan K, Mazlan N (2016) A review on the fabrication method of bio-sourced hybrid composites for aerospace and automotiveapplications. IOP conference series: materials science and engineering. https://doi.org/10.1088/1757-899x/152/1/012041

  64. Dong P, Prasanth R, Xu F, Wang X, Li B, Shankar R (2015) Eco-friendly polymer nanocomposite—properties and processing. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites processing and properties. Springer, New Delhi

    Google Scholar 

  65. Gunning M, Geever LM, Killion JA, Lyons JG, Higginbotham CL (2014) Effect of compatibilizer content on the mechanical properties of bioplastic composites via hot melt extrusion. Polym Plast Technol Eng 53:1223–1235

    Google Scholar 

  66. Cai J, Jia M, Xue P, Ding Y, Zhou X (2013) The effect of processing conditions on the mechanical properties and morphology of self-reinforced wood-polymer composite. Polym Compos 1567–1574. https://doi.org/10.1002/pc.22553

  67. Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding based approach without surface modification of nanofillers. Materials 3:1593–1619. https://doi.org/10.3390/ma3031593

  68. Díez EA (2014) Effect of extrusion on the electrical, mechanical and rheological properties of an ethylene butylacrylate/carbon black/graphite nanoplatelets nanocomposite. Diploma work, Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden

    Google Scholar 

  69. Peinado V, Castell P, García L, Fernández A (2015) Effect of extrusion on the mechanical and rheological properties of a reinforced poly(lactic acid): reprocessing and recycling of biobased materials. Materials 8:7106–7117. https://doi.org/10.3390/ma8105360

    Article  CAS  Google Scholar 

  70. Feldmann M, Heim HP, Zarges JC (2015) Influence of the process parameters on the mechanical properties of engineering biocomposites using a twin-screw extruder. Compos Part A 1–7. http://dx.doi.org/10.1016/j.compositesa.2015.03.028

  71. Kadam PG, Mhaske ST (2014) Effect of extrusion reprocessing on the mechanical, thermal, rheological and morphological properties of nylon 6/talc nanocomposites. J Thermoplast Compos Mater 1–19. https://doi.org/10.1177/0892705714551591

  72. Poletto M (2016) Polystyrene cellulose fiber composites: effect of the processing conditions on mechanical and dynamic mechanical properties. Rev Mater 21(3):552–559

    Google Scholar 

  73. Hajba S, Tábi T (2014) Development of natural fibre reinforced poly(lactic acid) biocomposites. In: ECCM16—16th European conference on composite materials, Seville, Spain, 22–26 June 2014, pp 1–8

    Google Scholar 

  74. Rassmann S, Reid RG, Paskaramoorthy R (2010) Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos Part A 4(11):1612–1619

    Google Scholar 

  75. Agubra VA, Owuor PS, Hosur MV (2013) Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials 3:550–563. https://doi.org/10.3390/nano3030550

    Article  CAS  Google Scholar 

  76. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Sci Eng 49(7):1253–1272. https://doi.org/10.1002/pen.21328

    Article  CAS  Google Scholar 

  77. Cruz J, Fangueiro R (2016) Surface modification of natural fibers: a review. Procedia Eng 155:285–288

    Article  CAS  Google Scholar 

  78. Chern CE, Nor AI, Norhazlin Z, Ariffin H, Yunus WMZW, Then YY (2014) Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. Int J Polym Sci. http://dx.doi.org/10.1155/2014/715801

  79. Zaaba NF, Ismail H, Jaafar M (2014) The effects of modifying peanut shell powder with polyvinyl alcohol on the properties of recycled polypropylene and peanut shell powder composites. BioResources 9(2):2128–2142

    Article  Google Scholar 

  80. Kumar TV, Chandrasekaran M, Padmanabhan S (2017) Characteristics and mechanical properties of reinforced polymer composites. ARPN J Eng Appl Sci 12(8):2450–2454

    Google Scholar 

  81. Asuke F, Aigbodion VS (2016) Experiment numerical study of dry sliding wear behavior of epoxy/periwinkles shell particulate composites. J Chin Adv Mater Soc 1–17. https://doi.org/10.1080/22243682.2015.1124736

  82. Hassan SB, Aigbodion VS, Patrick SN (2012) Development of polyester/eggshell particulate composites. Tribol Ind 34(4):217–225

    Google Scholar 

  83. Kadhum AAU, Mohammed AA (2016) Investigation the effect of natural materials on wear and hardness properties of polymeric composite materials. Iraqi J Mech Mater Eng 16(4):369–372

    Google Scholar 

  84. Atuanya CU, Aigbodion VS, Obiorah SO (2015) Evaluation of the mechanical properties of recycled low-density polyethylene/bean pod particulate bio-composites. J Chin Adv Mater Soc 3(4):345–358. https://doi.org/10.1080/22243682.2015.1081077

    Article  CAS  Google Scholar 

  85. Sarki J, Hassan SB, Aigbodion VS, Oghenevweta JE (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloy Compd 509:2381–2385

    Article  CAS  Google Scholar 

  86. Aigbodion VS, Atuanya CU, Igogori EA, AndIhom P (2013) Development of high-density polyethylene/orange peels particulate bio-composite. Gazi Univ J Sci 26(1):107–117

    Google Scholar 

  87. Subramani T, Krishnan S, Ganesan SK, Nagarajan G (2014) Investigation of mechanical properties in polyester and phenylester composites reinforced with chicken feather fiber. Int J Eng Res Appl 4(12):93–104

    Google Scholar 

  88. Kiew KS, Rahman MR, Hamdan S, Talibb ZA (2013) Maleic anhydride modified unsaturated polyester composites reinforced with chicken feather fiber: dielectric and morphological study. World Appl Sci J 25(6):899–907. https://doi.org/10.5829/idosi.wasj.2013.25.06.1347%5b

    Article  CAS  Google Scholar 

  89. Oladele IO, Omotoyimbo JA, Ayemidejor SH (2014) Mechanical properties of chicken feather and cow hair fibre reinforced high density polyethylene composites. Int J Sci Technol 3(1):66–72

    Google Scholar 

  90. Omah AD, Okorie BA, Omah EC, EzemaI C, Aigbodion VS, Orji UU (2017) Experimental correlation between varying cassava cortex and dielectric properties in epoxy/cassava cortex dielectric particulates composites. Part Sci Technol. https://doi.org/10.1080/02726351.2017.1307888

  91. Tushar S, Shirish P, Vikram D, Acharya R (2015) Natural fiber reinforced polymer composite material—a review. IOSR J Mech Civil Eng 142–147

    Google Scholar 

  92. Madhusudhan T, Swaroop GK (2016) A review on mechanical properties of natural fiber reinforced hybrid composites. Int Res J Eng Technol (IRJET) 3(4):2247–2251

    Google Scholar 

  93. Nitin S, Singh VK (2013) Mechanical behaviour of walnut reinforced composite. J Mater Environ Sci 4(2):233–238

    CAS  Google Scholar 

  94. Tao Y, Li P, Cai L (2016) Effect of fiber content on sound absorption, thermal conductivity and compression strength of straw fiber filled rigid polyurethane foams. BioResources 11(2):4159–4167

    Article  CAS  Google Scholar 

  95. Ameh AO, Isa MT, Sanusi I (2015) Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites. Leonardo Electron J Practices Technol 26:65–78

    Google Scholar 

  96. Shokoufa N, Nourbakhsh A, Ashkan G, Talaeipour M, Habibollah KE (2013) Investigating the effect of nanoclay on polypropylene-made cellulose composite. Res J Appl Sci Eng Technol 6(21):4022–4029. https://doi.org/10.19026/rjaset.6.3505

    Article  CAS  Google Scholar 

  97. Singla RK, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polym Plast Technol Eng 55(5):475–485. https://doi.org/10.1080/03602559.2015.1098688

    Article  CAS  Google Scholar 

  98. Pongtanayuta K, Thongpina C, Santawiteeb O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897. https://doi.org/10.1016/j.egypro.2013.06.826

  99. Alagarsamy SV, Sagayaraj AVS, Vignesh S (2015) Investigating the mechanical behaviour of coconut coir—chicken feather reinforced hybrid composite. Int J Sci Eng Technol Res (IJSETR), 4(12):4215–4221

    Google Scholar 

  100. Saikishore T, Rao PP, Reddy MCS (2017) Synthesis & investigation of the mechanical behaviour of luffa, groundnut shell, chicken feather and cowdung fibers reinforced epoxy composites. IJSRD Int J Sci Res Dev 5(4):42–46

    Google Scholar 

  101. Njoku RE, Obayi CS, Nnamchi PS (2011) Hybrid effect on the mechanical properties of sisal fiber and E-glass fiber reinforced polyester composites. Niger J Technol 30(3):97–103

    Google Scholar 

  102. Nalin P, Suppakula P, Atong D, Pechyen C (2014) Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia 56:201–210

    Google Scholar 

  103. Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly(lactic acid) and poly(butylene succinate) blends composites. J Fiber Bioeng Inform 6(1):85–94. https://doi.org/10.3993/jfbi03201308

  104. Jompanga L, Thumsorna S, Onb JW, Surinb P, Apawet C, Tirapong C, Narin K, Narongchai OC, Srisawata N (2013) Poly(lactic acid) and poly(butylene succinate) blend fibers prepared by melt spinning technique. Energy Procedia 34:493–499

    Article  Google Scholar 

  105. Jia W, Gong RH, Soutis C, Hogg PJ (2014) Biodegradable fibre reinforced composites composed of polylactic acid and polybutylene succinate. Plast Rubber Compos 43(3):82–88. https://doi.org/10.1179/1743289813Y.0000000070

    Article  CAS  Google Scholar 

  106. Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 1–11. https://doi.org/10.1002/app.43223

  107. Vignesh J, Selvam CM (2015) Experimental evaluation of wood dust particulate reinforced polymer composites. IRACST Eng Sci Technol Int J (ESTIJ) 5(4):226–229

    Google Scholar 

  108. FAO Statistical Yearbook 2014 Africa: Food and Agriculture (2014) Food and agriculture organization of the United Nations Regional Office for AfricaAccra

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Aigbodion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aigbodion, V.S., Okonkwo, E.G., Akinlabi, E.T. (2019). Eco-friendly Polymer Composite: State-of-Arts, Opportunities and Challenge. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_42

Download citation

Publish with us

Policies and ethics