Skip to main content

Processing, Characterization and Application of Natural Rubber Based Environmentally Friendly Polymer Composites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Environmentally friendly natural rubber composites (NRCs)/nanocomposites (NCs) filled with natural organic fillers coming from renewable and biodegradable sources have been raising continuous and utmost interests to fulfil the increasing demand related to the minimum use of petroleum-based non-renewable resources. In order to develop theĀ improved properties and performance characteristics of green NRCs/NCPs, continuously increasing attention has been devoted to enhance mechanical and dynamic mechanical properties through augmentation of interfacial adhesion among natural fillers and NR matrix, together with ensuring more even distribution of fillers via chemical modification of the fillers/NR and use of adhesion/dispersion promoters/additives. Therefore, mechanical and dynamic mechanical properties of various NRCs/NCPs have mainly been focused, along with necessary alterations in the biodegradability. In this context, NRCs/NCPs have been categorized into four major parts, i.e., NR composites filled with plant fibers, nano-cellulose (NC) reinforced NR NCPs, NRCs based on recycled rubber granulate, and NR composites containing proteins, with special attention being paid on processing, characterization, and preparation of NR composites filled with nanocellulosic fillers. The role of new microstructures, such as honeycomb, Zn-cellulose complex, cellulose-cellulose network etc., have been analyzed to obtain environmentally friendly NR composites suited for interpenetrating polymer network (IPN), sensor, and other sophisticated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BF:

Bamboo fiber

CB:

Carbon black

CF:

Coir/coconut fiber

CV:

Conventional vulcanization

DMA:

Dynamic mechanical analysis

EAB:

Elongation at break

EV:

Efficient vulcanization

IF:

Isora fiber

IPN:

Interpenetrating polymer network

LW:

Leather waste

MBTS:

2-mercaptobenzothiazole disulfide

NC:

Nanocellulose

NCP:

Nanocomposite

NF:

Nanofiller

NRC:

Natural rubber composite

NR:

Natural rubber

NW:

Nanowhisker

OPF:

Oil palm fiber

PC:

Polymer composite

PLA:

Poly(lactic acid)

PLF:

Pineapple leaf fiber

PP:

Polypropylene

RG:

Rubber granulate

RRG:

Recycled rubber granulate

SBR:

Styrene butadiene rubber

SEV:

Semi-efficient vulcanization

SF:

Sisal fiber

TMTD:

Tetramethyl thiuram disulfide

TSH:

Toluenosulfohydrazina

TS:

Tensile strength

ZMB:

Zinc-2-mercaptobenzothiazole

References

  1. Chattopadhyay PK, Das NC, Chattopadhyay S (2011) Influence of interfacial roughness and the hybrid filler microstructures on the properties of ternary elastomeric composites. Compos Part A-Appl Sci 42:1049ā€“1059

    ArticleĀ  Google ScholarĀ 

  2. Chattopadhyay PK, Chattopadhyay S, Das NC et al (2011) Impact of carbon black substitution with nanoclay on microstructure and tribological properties of ternary elastomeric composites. Mater Des 32:4696ā€“4704

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Mondal M, Chattopadhyay PK, Chattopadhyay S et al (2010) Thermal and morphological analysis of thermoplastic polyurethane-clay nanocomposites: comparison of efficacy of dual modified laponite vs. commercial montmorillonites. Thermochim Acta 510:185ā€“194

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Praveen S, Chattopadhyay PK, Albert P et al (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A-Appl Sci 40:309ā€“316

    ArticleĀ  Google ScholarĀ 

  5. Singha NR, Das P, Ray SK (2013) Recovery of pyridine from water by pervaporation using filled and crosslinked EPDM membranes. J Ind Eng Chem 6:2034ā€“2045

    ArticleĀ  Google ScholarĀ 

  6. Yu P, He H, Luo Y et al (2017) Reinforcement of natural rubber: the use of in situ regenerated cellulose from alkaline-urea-aqueous system. Macromolecules 50:7211ā€“7221

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Karmakar M, Mahapatra M, Singha NR (2017) Separation of tetrahydrofuran using RSM optimized accelerator-sulfur-filler of rubber membranes: systematic optimization and comprehensive mechanistic study. Korean J Chem Eng 34:1416ā€“1434

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Mahapatra M, Karmakar M, Mondal B et al (2016) Role of ZDC/S ratio for pervaporative separation of organic liquids through modified EPDM membranes: rational mechanistic study of vulcanization. RSC Adv 6:69387ā€“69403

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Singha NR, Ray S, Ray SK et al (2011) Removal of pyridine from water by pervaporation using filled SBR membranes. J Appl Polym Sci 121:1330ā€“1334

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Singha NR, Ray SK (2012) Removal of pyridine from water by pervaporation using crosslinked and filled natural rubber membranes. J Appl Polym Sci 124:E99ā€“E107

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Jacob M, Francis B, Thomas S et al (2006) Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 27:671ā€“680

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Joseph S, Joseph K, Thomas S (2006) Green composites from natural rubber and oil palm fiber: physical and mechanical properties. Int J Polym Mater 55:925ā€“945

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Visakh PM, Thomas S, Oksman K et al (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos Part A-Appl Sci 43:735ā€“741

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Kanoth BP, Claudino M, Johansson M et al (2015) Biocomposites from natural rubber: synergistic effects of functionalized cellulose nanocrystals as both reinforcing and cross-linking agents via free-radical thiol-ene chemistry. ACS Appl Mater Interfaces 7:16303ā€“16310

    ArticleĀ  Google ScholarĀ 

  15. Kato H, Nakatsubo F, Abe K et al (2015) Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids. RSC Adv 5:29814ā€“29819

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Tripathy AR, Morin JE, Williams DE et al (2002) A novel approach to improving the mechanical properties in recycled vulcanized natural rubber and its mechanism. Macromolecules 35:4616ā€“4627

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

The corresponding author gratefully acknowledges the Department of Science and Technology (DST), Government of India (YSS/2015/000886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayan Ranjan Singha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singha, N.R., Mahapatra, M., Karmakar, M., Chattopadhyay, P.K. (2019). Processing, Characterization and Application of Natural Rubber Based Environmentally Friendly Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_29

Download citation

Publish with us

Policies and ethics