Skip to main content

Fabrication Methods of Sustainable Hydrogels

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

The interest received on hydrogels probably reflects one of the greatest challenges for the two last decades. Able to hold and release solvents and builds, these three-dimensional polymeric structures work as a network able to reversibly change in response to small physico-chemical modifications in their surroundings. Considering the fantastic amount of available techniques described in the literature, a brief overview of the fabrication methodology is synthesized from physical/chemical cross-linking or polymerization grafting to radiation cross-linking. Thus, this review explores the fabrication and recent applications of hydrogels in various fields including imaging, optics, diagnostics, drug delivery systems or tissue engineering. Extensive use of hydrogels raises some questions about life cycle assessment and how fabricating and/or using sustainable and innovative versions of the intelligent hydrogels of tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensions

3D:

Three dimensions/three dimensional

4D:

Four dimensional

AA:

Acrylic acid

AD:

Adipocytes

ADSC:

Adipose-derived stem cells

BMP-2:

Bone morphogenetic proteins 2

CC:

Cell coating

CLSM:

Confocal laser scanning microscopy

DMEM:

Dulbecco’s modified eagle medium

ECM(s):

Extracellular matrices

EDC:

Ethyl carbodiimide

EG:

Ethylene glycol

EGDMA:

Ethylene glycol dimethacrylate

FBS:

Fetal bovine serum

FN:

Fibronectin

G:

Gelatin

HEMA:

Hydroxyethyl methacrylate

HUVECs:

Human umbilical vein endothelial cells

IPN:

Interpenetrating polymeric

iPS-CMs:

Induced pluripotent stem cell-derived cardiomyocytes

LbL:

Layer-by-layer

LCA:

Life-cycle assessment

LECs:

Lymph epithelial cells

MBSCs:

Bone marrow stromal cells

MCS:

Maleic chitosan derivatives

MMT:

Montmorillonite

NHDFs:

Normal human dermal fibroblasts

PAAm:

Polyacrylamide

PBS:

Phosphate buffer saline

PEG:

Poly(ethylene glycol)

PEGDA:

Poly(ethylene glycol) diacrylate

PLGA:

Poly(lactic-co-glycolic acid)

PPGs:

Polyacrylamide particle gels

PPO-PEO:

Poly(propylene oxide)-poly(ethylene oxide)

PVA:

Poly (vinyl) alcohol

PVP:

Poly (vinyl pyrrolidone)

PVSA:

Poly-vinylsulfonic acid

RGD:

Arginine-glycine-aspartic acid

TPVA:

Thiol-terminated poly (vinyl alcohol)

VAc:

Vinyl acetate

References

  1. Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM (2014) Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 193:162–173

    Article  CAS  Google Scholar 

  2. Mastropietro DJ, Omidian H, Park K (2012) Drug delivery applications for superporous hydrogels. Expert Opin Drug Deliv 9:71–89

    Article  CAS  Google Scholar 

  3. Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Euro Polym J 65:252–267

    Article  CAS  Google Scholar 

  4. Ahmed EM (2015) Hydrogels: preparation, characterizations and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  5. Singhal R, Gupta K (2016) A review: tailor-made hydrogel structures (classifications and synthesis parameters). Polym Plast Technol Eng 55:54–70

    Article  CAS  Google Scholar 

  6. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3, 6. https://doi.org/10.3390/gels3010006

  7. Bescrades IG, Demirtas TT, Durukan MD et al (2015) Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffold. J Tissue Eng Regen Med 9:1233–1246

    Article  CAS  Google Scholar 

  8. Salimi-Kenari H, Mollaie F, Dashtimoghadam E et al (2018) Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr Polym 181:141–149

    Article  CAS  Google Scholar 

  9. Tavsanli B, Okay O (2017) Mechanically strong hyaluronic acid hydrogels with an interpenetrated network structure. Euro Polym J 94:185–195

    Article  CAS  Google Scholar 

  10. Maisani M, Ziane S, Ehret C et al (2018) A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. J Tissue Eng Regen Med 12:1489–1500

    Article  CAS  Google Scholar 

  11. Varaprasad K, Rahavendra GM, Jayaramudu T et al (2017) A mini review on hydrogels classification and recent developements in miscellaneous applucations. Mat Sci Eng C 79:958–971

    Article  CAS  Google Scholar 

  12. Mati-Baouche N, Elchinger PH, de Baynast H, Pierre G, Delattre C, Michaud P (2014) Chitosan as an adhesive. Eur Polym J 60:198–213

    Article  CAS  Google Scholar 

  13. Shonnard DR, Kicherer A, Saling P (2003) Industrial applications using BASF ecoefficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37:5340–5348

    Article  CAS  Google Scholar 

  14. Vink ETH, Rábago KR, Glassner DA, Gruber P (2003) Applications of life cycle assessment to nature works polylactide (PLA) production. Polym Degr Stab 80:403–19

    Article  CAS  Google Scholar 

  15. Clark JH (2008) Green chemistry: today (and tomorrow). Green Chem 8:17–21

    Article  Google Scholar 

  16. Tian H, Tang Z, Zhuang X et al (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  17. Takashi L, Hatsumi T, Makoto M et al (2007) Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842

    Article  CAS  Google Scholar 

  18. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15

    Article  CAS  Google Scholar 

  19. Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, Meddahi-Pelle A, Pavon-Djavid G, Matricardi P (2018) PVA/dextran hydrogel patches as delivery system of antioxydant astaxanthin: a cardiovascular approach. Biomed Mater 13:1–13

    Google Scholar 

  20. Maolin Z, Jun L, Min Y et al (2000) The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400

    Article  Google Scholar 

  21. Hacker MC, Mikos AG (2011) Synthetic polymers. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Principles of regenerative medicine, 2nd edn. Academic Press, USA, pp 587–622

    Chapter  Google Scholar 

  22. Ahmed EM, Aggor FS, Awad AM et al (2013) An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym 91(2):693–698

    Article  CAS  Google Scholar 

  23. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels: a review. Saudi Pharm J 24(5):554–559

    Article  Google Scholar 

  24. Liu CY, Matsusaki M, Akashi M (2015) Control of cell-cell distance and cell densities in millimeter-sized 3D tissues constructed by collagen nanofiber coating techniques. ACS Biomater Sci Eng 1:639–645

    Article  CAS  Google Scholar 

  25. Yuangang Z, Ying Z, Xiuhua Z et al (2012) Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50(1):82–87

    Article  CAS  Google Scholar 

  26. Brannon-Peppas L, Harland RS (1991) Absorbent polymer technology. J Control Release 17(3):297–298

    Article  Google Scholar 

  27. Li Y, Huang G, Zhang X et al (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672

    Article  CAS  Google Scholar 

  28. Matsusaki M, Yoshida H, Akashi M (2007) The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials 28:2729–2737

    Article  CAS  Google Scholar 

  29. Gobbi A, Whyte GP (2016) One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 44(11):2846–2854

    Article  Google Scholar 

  30. Mahinroosta M, Farsangi ZJ, Allahverdi A et al (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mat Tod Chem 8:42–55

    Google Scholar 

  31. Pierschbacher MD, Ruoslahti E (1987) Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem 262:17294–17298

    CAS  Google Scholar 

  32. Chang PC, Liu BY, Liu CM et al (2007) Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J Biomed Mater Res A 81:771–780. https://doi.org/10.1002/jbm.a.31031

    Article  CAS  Google Scholar 

  33. Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27:4098–4108. https://doi.org/10.1016/j.biomaterials.2006.03.029

    Article  CAS  Google Scholar 

  34. Liss M, Petersen B, Wolf H et al (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495

    Article  CAS  Google Scholar 

  35. Decher G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277:1232–1237. https://doi.org/10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  36. Decher G, Hong JD (2011) Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327. https://doi.org/10.1002/masy.19910460145

    Article  Google Scholar 

  37. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  Google Scholar 

  38. Arnaout MA, Mahalingam B, Xiong J-P (2005) Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 21:381–410

    Article  CAS  Google Scholar 

  39. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3:1–15. https://doi.org/10.1101/cshperspect.a004994

    Article  CAS  Google Scholar 

  40. Nagae M, Re S, Mihara E et al (2012) Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. J Cell Biol 197:131–140. https://doi.org/10.1083/jcb.201111077

    Article  CAS  Google Scholar 

  41. Liu P, Zhai M, Li J et al (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63(3–6):525–528

    Article  CAS  Google Scholar 

  42. Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404

    Article  CAS  Google Scholar 

  43. Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1:965–977

    Article  CAS  Google Scholar 

  44. Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-crosslinked-poly(ethylene glycol) hydrogels. Macromolecules 30:5255–5264

    Article  CAS  Google Scholar 

  45. Chen X, Martin BD, Neubauer TK et al (1995) Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydr Polym 28:15–21

    Article  CAS  Google Scholar 

  46. Raia NR, Partlow BP, McGill M et al (2017) Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131:58–67

    Article  CAS  Google Scholar 

  47. Nishiguchi A, Matsusaki M, Asano Y et al (2014) Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials 35:4739–4748. https://doi.org/10.1016/j.biomaterials.2014.01.079

    Article  CAS  Google Scholar 

  48. Nishiguchi A, Yoshida H, Matsusaki M et al (2011) Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 23:3506–3510. https://doi.org/10.1002/adma.201101787

    Article  CAS  Google Scholar 

  49. Matsusaki M, Akashi M (2014) Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polym J 46:524–536. https://doi.org/10.1038/pj.2014.20

    Article  CAS  Google Scholar 

  50. Stockwell RA (1967) The cell density of human articular and costal cartilage. J Anat 101:753–763

    CAS  Google Scholar 

  51. Liu CY, Matsusaki M, Akashi M (2014) The construction of cell-density controlled three-dimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces. RSC Adv 4:46141–46144. https://doi.org/10.1039/C4RA09085C

    Article  CAS  Google Scholar 

  52. Zhou Y, Zhao S, Zhang C et al (2018) Photopolymerized maleilated chitosan/thiol-terminated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Carbohydr Polym 184:383–389

    Article  CAS  Google Scholar 

  53. Lu M, Liu Y, Huang YC et al (2018) Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym 181:668–674

    Article  CAS  Google Scholar 

  54. Broguiere N, Isenmann L, Zenobi-Wong M (2016) Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials 99:47–55

    Article  CAS  Google Scholar 

  55. Yan HJ, Casalini T, Hulsart-Billström G et al (2018) Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation. Biomaterials 161:190–202

    Article  CAS  Google Scholar 

  56. Kim S, Cui ZK, Kim PJ, Jung LY, Lee M (2018) Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Acta Biomater (in press). https://doi.org/10.1016/j.actbio.2018.03.034

  57. Amano Y, Nishiguchi A, Matsusaki M et al (2016) Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays. Acta Biomater 33:110–121

    Article  CAS  Google Scholar 

  58. Ullah F, Othman MBH, Javed F et al (2015) Classification, processing and application of hydrogels: a review. Mat Sci Eng C 57:414–433

    Google Scholar 

  59. Pierre G, Punta C, Delattre C et al (2017) TEMPO-mediated oxidation of polysaccharides: an ongoing story. Carbohydr Polym 165:71–85

    Article  CAS  Google Scholar 

  60. Anisha S, Kumar SP, Kumar GV et al (2010) Hydrogels: a review. Int J Pharmaceut Sci Rev Res 4(2):97

    Google Scholar 

  61. Tylman M, Pieklarz K, Owczarz P et al (2018) Structure of chitosan thermosensitive gels containing graphene oxide. J Mol Struc 1161:530–535. https://doi.org/10.1016/j.molstruc.2018.02.065

    Article  CAS  Google Scholar 

  62. Alshememry AK, El-Tokhy SS, Unsworth LD (2017) Using properties of tumor microenvironments for controlling local, on-demand delivery from biopolymer-based nanocarriers. Curr Pharm Des 23:5358–5391. https://doi.org/10.2174/1381612823666170522100545

    Article  CAS  Google Scholar 

  63. Qin XH, Wang X, Rottmar M et al (2018) Near-infrared light-sensitive polyvinyl alcohol hydrogel photoresist for spatiotemporal control of cell-instructive 3D microenvironments. Adv Mat 30(1705564). https://doi.org/10.1002/adma.201705564

  64. Tan Z, Parisi C, Di Silvio L et al (2017) Cryogenic 3D Printing of super soft hydrogels. Sci Reports 7(16668). https://doi.org/10.1038/s41598-017-16668-9

  65. Karis DG, Ono RJ, Zhang M et al (2017) Cross-linkable multi-stimuli responsive hydrogel inks for direct-write 3D printing. Polym Chem 8:4199–4206

    Article  CAS  Google Scholar 

  66. Agarwala S, Lee JM, Ng WL (2018) A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelec 102:365–371

    Article  CAS  Google Scholar 

  67. Lv C, Sun XC, Xia H et al (2018) Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sens Act B: Chem 259:736–744. https://doi.org/10.1016/j.snb.2017.12.053

    Article  CAS  Google Scholar 

  68. Kirillova A, Maxson R, Stoychev G et al (2017) 4D Biofabrication using shape-morphing hydrogels. Adv Mat 29(1703443). https://doi.org/10.1002/adma.201703443

  69. Wang Y, Adokoh CK, Narain R (2018) Recent development and biomedical applications of self-healing hydrogels. Exp Opin Drug Deliv 15:77–91. https://doi.org/10.1080/17425247.2017.1360865

    Article  CAS  Google Scholar 

  70. Aljohani W, Ullah MW, Li W et al (2018) Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. J Polym Res 25(62). https://doi.org/10.1007/s10965-018-1455-0

  71. Azizi S, Mohamad R, Abdul Rahim R et al (2017) Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol 104:423–431

    Article  CAS  Google Scholar 

  72. Tedesco MT, Di Lisa D, Massobrio P (2018) Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials 156:159–171

    Article  CAS  Google Scholar 

  73. O’Connell MK, Murthy S, Phan S et al (2008) The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol J Int Soc Matrix Biol 27:171–181. https://doi.org/10.1016/j.matbio.2007.10.008

    Article  CAS  Google Scholar 

  74. Su D et al (2018) Elastin: a near-infrared zwitterionic fluorescent probe for in vivo elastin imaging. Chem J (accepted)

    Google Scholar 

  75. Lessard J, Pelletier M, Biertho L et al (2015) Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS ONE 10:e0122065. https://doi.org/10.1371/journal.pone.0122065

    Article  CAS  Google Scholar 

  76. Louis F, Pannetier P, Souguir Z et al (2017) A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes. Biotechnol Bioeng 114:1813–1824. https://doi.org/10.1002/bit.26306

    Article  CAS  Google Scholar 

  77. Toda S, Uchihashi K, Aoki S et al (2009) Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration. Organogenesis 5:50–56

    Article  Google Scholar 

  78. Choi JS, Kim BS, Kim JY et al (2011) Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A 97A:292–299. https://doi.org/10.1002/jbm.a.33056

    Article  CAS  Google Scholar 

  79. Hayashi K, Okamoto F, Hoshi S et al (2017) Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng 1:0044

    Article  Google Scholar 

  80. Liu CY, Matsusaki M, Akashi M (2016) Three-dimensional tissue models constructed by cells with nanometer- or micrometer-sized films on the surfaces. Chem Rec 16:783–796

    Article  CAS  Google Scholar 

  81. Alla SG, Sen M, El-Naggar AW (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485

    Article  CAS  Google Scholar 

  82. Amin MCI, Ahmad N, Halib N et al (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473

    Article  CAS  Google Scholar 

  83. Zu Y, Zhang Y, Zhao X et al (2012) Preparation and characterization of chitosan polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82–87

    Article  CAS  Google Scholar 

  84. Coviello T, Grassi M, Rambone G et al (1999) Novel hydrogel system from scleroglucan: synthesis and characterization. J Control Release 60(2–3):367–378

    Article  CAS  Google Scholar 

  85. Kuijpers AJ, Van Wachem PB, Van Luyn MJ et al (2000) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336

    Article  CAS  Google Scholar 

  86. Hubbell JA (1996) Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release 39:305–313

    Article  CAS  Google Scholar 

  87. Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217

    Article  Google Scholar 

  88. Taniguchi I, Akiyoshi K, Sunamoto J (1999) Self-aggregate nanoparticles of cholesteryl and galactoside groups-substituted pullulan and their specific binding to galactose specific lectin, RCA120. Macromol Chem Phys 200:1555–1560

    Google Scholar 

  89. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Article  CAS  Google Scholar 

  90. Bezemer JM, Radersma R, Grijpma DW et al (2000) Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices. J Control Release 64(1–3):179–192

    Article  CAS  Google Scholar 

  91. Yang G, Xiao Z, Ren X, Long H et al (2016) Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4:e2497

    Article  CAS  Google Scholar 

  92. Silva DM, Nunes C, Pereira I et al (2014) Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels. Carbohydr Polym 114:458–466

    Article  CAS  Google Scholar 

  93. Park H, Woo EK, Lee KY (2014) Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Release: Off J Control Release Soc 196:146–153

    Article  CAS  Google Scholar 

  94. Alexandre N, Ribeiro J, Gärtner A et al (2014) Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—in vitro and in vivo studies. J Biomed Mat Res 102:4262–4275

    Google Scholar 

  95. Yang D, Hartman MR, Derrien TL et al (2014) DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 47:1902–1911

    Article  CAS  Google Scholar 

  96. Gao Y, Wei Z, Li F et al (2014) Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 16:1255–1261

    Article  CAS  Google Scholar 

  97. Li X, Fan DD, Deng JJ et al (2013) Synthesis and characterization of chitosan human like collagen/β-sodium glycerophosphate-carbodiimide hydrogel. Asian J Chem 25:9613–9616

    Article  CAS  Google Scholar 

  98. Zhang H, Shi R, Xie A et al (2013) Novel TiO2/PEGDA hybrid hydrogel prepared in situ on tumor cells for effective photodynamic therapy. ACS Appl Mater Interfaces 5:12317–12322

    Article  CAS  Google Scholar 

  99. Chicatun F, Muja N, Serpooshan V et al (2013) Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds. Soft Matter 9:10811–10821

    Article  CAS  Google Scholar 

  100. Abdel-Mohsen AM, Aly AS, Hrdina R et al (2011) Eco-synthesis of PVA/chitosan hydrogels for biomedical application. J Polym Env 19:1005–1012

    Article  CAS  Google Scholar 

  101. Saffer EM, Tew GN, Bhatia SR (2011) Poly(lactic acid)-poly(ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications. Curr Med Chem 18:5676–5686

    Article  CAS  Google Scholar 

  102. Kosukegawa H, Mamada K, Kuroki K et al (2009) Evaluation of compliance of poly (vinyl alcohol) hydrogel for development of arterial biomodeling. In: Proceedings of the 13th international conference on biomedical engineering, IFMBE, pp 1993–1995

    Google Scholar 

  103. Meenach S, Anderson AA, Suthar M et al (2009) Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. J Biomed Mar Res Part A 91A:903–909

    Article  CAS  Google Scholar 

  104. Zhao L, Mitomo H (2008) Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J Appl Polym Sci 110:1388–1395

    Article  CAS  Google Scholar 

  105. Becerra-bracamontes F, Sanchez-Diaz JC, Gonzalez-Alvarez A et al (2007) Design of a drug delivery system based on poly(acrylamide-co-acrylic acid)/chitosan nanostructured hydrogels. J Appl Polym Sci 106:3939–3944

    Article  CAS  Google Scholar 

  106. Park JS, Woo DG, Sun BK et al (2007) In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 124:51–59

    Article  CAS  Google Scholar 

  107. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311

    Article  CAS  Google Scholar 

  108. Darsow U, Vieluf D, Ring J (1995) Atopy patch test with different vehicles and allergen concentrations: an approach to standardization. J Allergy Clin Immunol 95:677–684

    Article  CAS  Google Scholar 

  109. Corkhill PH, Hamilton CJ, Tighe BJ (1989) Synthetic hydrogels. VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 10:3–10

    Article  CAS  Google Scholar 

  110. Fuciños C, Fuciños P, Miguez M et al (2014) Temperature- and pH-sensitive nanohydrogels of poly(N-Isopropylacrylamide) for food packaging applications: modelling the swelling-collapse behavior. PLoS ONE 9:e87190. https://doi.org/10.1371/journal.pone.0087190

    Article  CAS  Google Scholar 

  111. Rhim JW, Wang LF (2013) Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym 96:71–81

    Article  CAS  Google Scholar 

  112. Fuciños C, Guerra NP, Teijon JM et al (2012) Use of poly(N-isopropylacrylamide) nanohydrogels for the controlled release of pimaricin in active packaging. J Food Sci 77:N21–28. https://doi.org/10.1111/j.1750-3841.2012.02781.x

    Article  CAS  Google Scholar 

  113. Roy N, Saha N, Kitano T et al (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89:346–353

    Article  CAS  Google Scholar 

  114. Schneider KP, Gewessler U, Flock T et al (2012) Signal enhancement in polysaccharide-based sensors for infections by incorporation of chemically modified laccase. N Biotechnol 29:502–509

    Article  CAS  Google Scholar 

  115. Incoronato AL, Conte A, Buonocore GG et al (2011) Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J Dairy Sci 94:1697–1704

    Article  CAS  Google Scholar 

  116. Langmaier F, Mokrejs P, Kolomaznik K et al (2008) Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag 28:549–556

    Article  CAS  Google Scholar 

  117. Varma DM, Gold GT, Taub PJ et al (2014) Injectable carboxymethylcellulose hydrogels for soft tissue filler applications. Acta Biomater 10:4996–5004

    Article  CAS  Google Scholar 

  118. Kodavaty J, Deshpande AP (2014) Regimes of microstructural evolution as observed from rheology and surface morphology of crosslinked poly(vinyl alcohol) and hyaluronic acid blends during gelation. J Appl Polym Sci 131:1–10. https://doi.org/10.1002/APP.41081

    Article  Google Scholar 

  119. Tichota DM, Silva AC, Sousa Lobo JM et al (2014) Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int J Nanomed 9:3855–3864

    Google Scholar 

  120. Wang PC, Huang YL, Hou SS et al (2013a) Lauroyl/palmitoyl glycol chitosan gels enhance skin delivery of magnesium ascorbyl phosphate. J Cosmet Sci 64:273–286

    Google Scholar 

  121. Wang Y, Du R, Yu T (2013b) Systematical method for polyacrylamide and residual acrylamide detection in cosmetic surgery products and example application. Sci Justice 53:350–357

    Google Scholar 

  122. Pavicic T (2013) Calcium hydroxylapatite filler: an overview of safety and tolerability. J Drugs Dermatol 12:996–1002

    CAS  Google Scholar 

  123. Lee E, Kim B (2011) Smart delivery system for cosmetic ingredients using pH-sensitive polymer hydrogel particles. Korean J Chem Eng 28:1347. https://doi.org/10.1007/s11814-010-0509-8

    Article  CAS  Google Scholar 

  124. Raschip IE, Hitruc EG, Vasile C (2011) Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: a spectral and thermal characterization. High Perf Polym 23:219–229. https://doi.org/10.1177/0954008311399112

    Article  CAS  Google Scholar 

  125. Simi CK, Abraham TE (2010) Transparent xyloglucan–chitosan complex hydrogels for different applications. Food Hydrocoll 24:72–80

    Article  CAS  Google Scholar 

  126. Chandrika KSVP, Singh A, Sarkar DJ et al (2014) pH-sensitive crosslinked guar gum-based superabsorbent hydrogels: swelling response in simulated environments and water retention behavior in plant growth media. J Appl Polym Sci 131:1–12. https://doi.org/10.1002/APP.41060

    Article  Google Scholar 

  127. Böhlenius H, Overgaard R (2014) Effects of direct application of fertilizers and hydrogel on the establishment of poplar cuttings. Forests 5:2967–2979

    Article  Google Scholar 

  128. Hotta M, Kennedy J, Higginbotham CL et al (2014) Synthesis and characterisation of novel ι-Carrageenan hydrogel blends for agricultural seed coating application. Appl Mech Mat 679:81–91

    Article  CAS  Google Scholar 

  129. Tang H, Zhang L, Hu L et al (2014) Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J Plant Growth Regul 33:195–201

    Article  CAS  Google Scholar 

  130. Bortolin A, Aouada FA, Mattoso LH et al (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439

    Article  CAS  Google Scholar 

  131. Shahid SA, Qidwai AA, Anwar F et al (2012) Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 17:9397–9412

    Article  CAS  Google Scholar 

  132. Guilherme MR, Reis AV, Paulino AT et al (2010) Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. J Appl Polym Sci 117:3146–3154

    CAS  Google Scholar 

  133. Bao JM, Wang YZ, Li YX (2014a) Preparation of crosslinked dextran hydrogel microspheres by inverse suspension polymerization and its application in separation of liposome and drug. Xiandai Huagong/Modern Chem Indus 34:55–58, 60. ISSN: 02534320

    Google Scholar 

  134. Bao S, Wu D, Wang Q et al (2014b) Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue. PLoS One 9(2):e88802. https://doi.org/10.1371/journal.pone.0088802

  135. Cao Y, Lui N, Fu C et al (2014) Thermo and pH dual-responsive materials for controllable oil/water separation. ACS Appl Mater Interfaces 6:2026–2030

    Article  CAS  Google Scholar 

  136. Tongwa P, Bai B (2014) Degradable nanocomposite preformed particle gel for chemical enhanced oil recovery applications. J Petrol Sci Eng 124:35–45

    Article  CAS  Google Scholar 

  137. Zolfaghari R, Katlab AA, Nabavizadeh J et al (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J Appl Polym Sci 100:2096–2103

    Article  CAS  Google Scholar 

  138. Aalaie J, Vasheghani-Farahani E, Semsarzadeh MA et al (2008) Gelation and swelling behavior of semi-interpenetrating polymer network hydrogels based on polyacrylamide and poly(vinyl alcohol). J Macromol Sci Part B 47:1017–1027

    Article  CAS  Google Scholar 

  139. Lei ZX, Chen YM, Chen YW et al (2006) Preliminary results of pilot test on indepth permeability profile control/emulsion flood by using PAM inverse emulsion. Oilfield Chem 23:81–84

    CAS  Google Scholar 

  140. Wang XM, Zhang DS (2003) A preliminary study on xanthan/zirconium flowable gel as flooding fluid. Oildfield Chem 20:157–159

    Google Scholar 

  141. Tiena HT, Ottovaab AL (1998) Supported planar lipid bilayers (s-BLMs) as electrochemical biosensors. Electrochim Acta 43:3587–3610

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by JST-PRESTO (15655131) and a Grant-in-Aid for Scientific Research (B) (26282138 and 17H02099). The authors also thank the program “Exploration Japon 2018” from Campus France, SST and SCAC (Ambassade de France au Japon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delattre, C., Louis, F., Akashi, M., Matsusaki, M., Michaud, P., Pierre, G. (2019). Fabrication Methods of Sustainable Hydrogels. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_13

Download citation

Publish with us

Policies and ethics